Hart InterCivic
Verity Voting 2.0
Demonstration

Presenters:

• Letty Salazar – Hart InterCivic
• Bob Heisner – Hart InterCivic
• Chad Colgan – HARP

EAC – Certification Number
HRTVerity 2.0
May 31, 2016

Mark Goins
Coordinator of Elections
Division of Elections, Office of Tennessee Secretary of State Tre Hargett
312 Rosa L. Parks Avenue, 7th Floor - William R. Snodgrass Tower
Nashville, TN 37243

Via: Federal Express
RE: Application for Certification of Verity Voting 2.0

Dear Mr. Goins,

Hart InterCivic, Inc. is seeking certification of Verity Voting 2.0 in the State of Tennessee. Verity Voting 2.0 is certified by the EAC as conformant with the federal Voluntary Voting System Guidelines (VVSG), Version 1.0 (2005). We would also like to request the opportunity to demonstrate Verity at the July 11, 2016 meeting of the State Election Commission.

Verity Voting 2.0 includes the following components:

- Verity Data - Data management software application
- Verity Build - Election definition software application
- Verity Central - Central scanning software application
- Verity Count - Tabulation and reporting software application
- Verity Print - Ballot production device, for on-demand printing
- Verity User Management - User management software application
- Verity Election Management - Election management software application
- Verity Scan - Digital scanning voting device
- Verity Touch Writer with Access - Ballot marking device, with audio tactile interface (ATI)
- Verity Touch - Direct Recording Electronic (DRE) device
- Verity Touch with Access - Accessible DRE device, with ATI
- Verity Controller - DRE polling place management device

Testing and Deployment Status:

- Verity Voting 2.0 was certified to the 2005 Voluntary Voting System Guidelines by the Election Assistance Commission on April 27, 2016. The Certificate of Conformance and Scope of Certification are included with this application.
- Verity Voting 2.0 concluded testing at SLI Compliance (Denver, Colorado) in April 2016. The test report is included with this application.
Overview of the Verity Voting system

The Verity Voting system includes software, hardware, devices, and peripheral components that allow election professionals to accomplish the following high-level tasks:

- Election definition
- Ballot production
- Flash media production
- Voting machine configuration and use
- Central scanning and adjudication of ballots
- Counting of votes
- Consolidation and reporting of results and audit logs

Identification of the Verity Voting system

Software Applications

- **Verity Data** is a component of the Verity Voting system used by officials to enter election data for contests, candidates, proposition text, translations, and audio. Data also provides the user with controls for proofing of data and layout and performs validation prior to locking the data to ensure its readiness for use in Verity Build.

- **Verity Build** enables election officials to define ballot styles and generate election definitions. In addition to producing paper and electronic ballot styles, Build allows users to program voting device behavior in a variety of ways. After ballot generation, Build electronically writes the election data file (including all ballot styles) to portable flash media known as vDrives, which can then be deployed for a variety of different voting types, such as central scanning, with Verity Central, or in-person voting with Verity Scan, Verity Touch Writer, and Verity Touch. After generating election definitions, Build can also print ballots or output them electronically for third-party printers.

- **Verity Central** enables election officials to scan paper ballots at a central location using a commercial-off-the-shelf (COTS) scanner, adjudicate voter selection marks as necessary, and convert voter selection marks to electronic Cast Vote Records (CVRs). Central is especially well-suited for scanning and adjudicating by-mail ballots. When all ballots have been scanned and adjudicated, Central writes Cast Vote Records to vDrive portable flash media, which can be tabulated in Verity Count tabulation software. It is important to note that Central does not tabulate votes; because it simply scans and records Cast Vote Records, this allows jurisdictions to begin scanning before the close of polls, thereby greatly accelerating the scanning workflow. While Central does produce a variety of reports, because it does not tabulate, it does not produce reports containing results totals.

- **Verity Count** allows election officials to tabulate and report the results of Cast Vote Records stored on vDrives. vDrives inserted into the tabulation workstation can contain by-mail votes from Central, or in-person votes from Scan or Controller devices. Once the CVRs have been read and tabulated, Count can produce a variety of standard and customized reports. Count also allows officials to adjudicate write-in votes from Scan, Controller, or Central. Finally, Count also collects and stores audit logs from Verity voting devices, allowing for post-election audit and/or analysis.

- **Verity User Management** enables users with administrative permissions to create and manage user accounts within the Verity Voting system. Depending on the component for which the accounts are created, permissions may be managed by various roles. Depending on the role, each user has access to different features of the Verity software applications and other components.

- **Verity Election Management** enables users with administrative permissions to add, copy, delete, import, export, archive, restore, and manage elections in the Verity system.
Verity Scan is a digital scanner for paper ballots. Scan is paired with a purpose-built ballot box to ensure accurate, secure, and private ballot scanning and vote casting for each voter. Poll workers perform a minimal number of steps to open the polls and activate the Scan device so that it can receive paper ballots. Once the polls are open, to vote, voters simply insert their ballots when Scan indicates it is appropriate, and then voters wait for Scan to indicate that the ballot has been successfully cast. Scan also supports “second chance” voting for mismarked ballots. During the election definition process in Verity Build, election officials may specify the types of mismarks for which Scan should reject ballots and present voter instruction messages for “second chance voting.” Officials can choose to flag undervotes, overvotes, and blank ballots, and they can also specify whether voters are required to have poll worker assistance to cast a mismarked ballot, or not. After scanning, each ballot’s Cast Vote Record is stored on vDrive portable flash media, which can be tabulated by the Count software application. Scan includes a compact and durable integrated storage case for secure, easy transportation and storage.

Verity Touch Writer is a ballot marking device for paper ballots. Touch Writer’s electronic interface is paired with a commercial-off-the-shelf (COTS) printer, so that voters can mark selections electronically, review their selections, and then print a marked ballot that is the same format as ballots produced for voters who hand-mark their ballots. Because Touch Writer prints a complete ballot from blank stock, including voter selections, it provides true equality of access for all voters. Poll workers perform a minimal number of steps to open the polls and activate the Touch Writer device so that it is ready to receive a voter’s activation code; this allows voters to activate their ballot session by entering an anonymous Access Code privately. The removable vDrive election media on Touch Writer allows its audit logs to be transferred to the Count workstation for review. It is important to note that Touch Writer is a ballot marking device only, and as such it does not store electronic cast vote records, nor does it produce reports with results totals. Ballots marked with Touch Writer are cast by inserting them into a Scan device. Like Scan, Touch Writer includes a compact and durable integrated storage case for secure, easy transportation and storage.

Verity, Touch, Touch with Access, and Controller are Direct Recording Electronic (DRE) devices. After polls have been opened, poll worker(s) use the Controller to create anonymous voter Access Codes that are associated with various ballot styles. Access Codes are used by voters to activate their ballot session and cast a vote in private. Voters use the touch display on the Touch or Touch with Access, or the Verity Access ATI which is permanently attached to the Touch with Access. After the voter privately and independently marks and reviews the ballot, he or she will electronically cast the ballot. The poll worker uses the Controller to manage any combination of Touch or Touch with Access devices, up to a total of 12, that are connected via a daisy-chain network.

Verity Access is an audio tactile interface (ATI) controller that is connected to Touch Writer ballot marking devices and Touch with Access DRE voting devices, as a complement to the touchscreen display, in order to provide additional options for accessible voting. Access has three tactile buttons, one audio port, one port for two-switch adaptive devices (such as “jelly switches” or sip-and-puff devices), and a custom USB cable. Jacks for headphones and adaptive devices are located on the top edge of the device, and the device has gripping surfaces on either side.

Verity Print is a pre-voting ballot production device that produces unmarked paper ballots. Print is paired with a commercial off-the-shelf printer to allow the user to select and print the desired ballot style based on the precinct and voter registration information. The Print device is activated so the election official can print a blank ballot from one selected precinct. Ballots can be printed on-demand for immediate use or can be printed in advance for emergency or absentee purposes.

Ballot Box. Designed to work seamlessly with the Scan device, the Verity Ballot Box is designed for security, light weight, and ease of deployment. Using an innovative folding design, the durable ballot box includes separate secure compartments for scanned and un-scanned ballots, and it folds to just 5” thin, for easy transportation and storage.

Voting Booth. Like the Ballot Box, the specially designed voting booth for Touch Writer and Touch is designed for light weight and easy set up. The booth includes only three parts to assemble, and it also includes durable nylon
privacy screens. ADA-compliant versions of the Verity Voting Booth are also designed to comply with VVSG requirements for accessibility and controls within reach.

- **Verity vDrive.** vDrives are flash memory media devices that carry the election definition from Verity to Verity devices, including Scan, Touch Writer, and Controller. vDrives also store Cast Vote Records (CVRs) and audit information. After polls are closed, vDrives can be removed from Controller, Scan or Touch Writer to transfer CVRs and/or audit logs to Count. vDrives are also used to store CVRs associated with scanned ballots in Central. vDrives from Controller, Scan and Central are read into Count, which tabulates votes and reports results.

- **Verity Key** is a two-factor authentication device used to secure access to critical functions throughout the election. Two-factor authentication means that users must have the physical Key device, which is similar to a USB token, as well as knowing the passcode associated with the physical security device. This electronic device is required for access to secure functions in the Build, Central, and Count applications, including tasks such as accepting ballot styles, opening new election functions, and tabulating votes.

Additional Materials

Hart has included the following items with this application submission:

- Test report by an independent testing authority indicating conformance to standard for voting equipment issued by the U.S. Election Assistance Commission.
- Financial report
- List of all jurisdictions that have already purchased Verity Voting.

I look forward to your favorable review of this application and the opportunity to demonstrate Verity Voting 2.0 before the State Election Commission at its July 11th meeting. For questions or additional information, please feel free to contact me.

Respectfully submitted,

[Signature]

Pam Cardenas
Certification Manager
Hart InterCivic
(512) 252-6813
pcardenas@hartic.com
The voting system identified on this certificate has been evaluated at an accredited voting system testing laboratory for conformance to the 2005 Voluntary Voting System Guidelines (2005 VVSG). Components evaluated for this certification are detailed in the attached Scope of Certification document. This certificate applies only to the specific version and release of the product in its evaluated configuration. The evaluation has been verified by the EAC in accordance with the provisions of the EAC Voting System Testing and Certification Program Manual and the conclusions of the testing laboratory in the test report are consistent with the evidence adduced. This certificate is not an endorsement of the product by any agency of the U.S. Government and no warranty of the product is either expressed or implied.

Product Name: Verity
Model or Version: 2.0
Name of VSTL: SLI Global
EAC Certification Number: HRTVerity2.0
Date Issued: 4/27/2016

Executive Director
U.S. Election Assistance Commission
Scope of Certification Attached
Scope of Certification

This document describes the scope of the validation and certification of the system defined above. Any use, configuration changes, revision changes, additions or subtractions from the described system are not included in this evaluation.

Significance of EAC Certification

An EAC certification is an official recognition that a voting system (in a specific configuration or configurations) has been tested to and has met an identified set of Federal voting system standards. An EAC certification is not:

- An endorsement of a Manufacturer, voting system, or any of the system’s components.
- A Federal warranty of the voting system or any of its components.
- A determination that a voting system, when fielded, will be operated in a manner that meets all HAVA requirements.
- A substitute for State or local certification and testing.
- A determination that the system is ready for use in an election.
- A determination that any particular component of a certified system is itself certified for use outside the certified configuration.

Representation of EAC Certification

Manufacturers may not represent or imply that a voting system is certified unless it has received a Certificate of Conformance for that system. Statements regarding EAC certification in brochures, on Web sites, on displays, and in advertising/sales literature must be made solely in reference to specific systems. Any action by a Manufacturer to suggest EAC endorsement of its product or organization is strictly prohibited and may result in a Manufacturer’s suspension or other action pursuant to Federal civil and criminal law.

System Overview:

The Hart Verity Voting 2.0 voting system represents a set of software applications for pre-voting, voting and post-voting election project activities for jurisdictions of various sizes and political division complexities. Verity Voting 2.0 functions include:

- Defining the political divisions of the jurisdiction and organizing the election with its hierarchical structure, attributes and associations.
- Defining the election events with their attributes such as the election name, date and type, as well as contests, candidates, referendum questions, voting locations and their attributes.
- Preparing and producing ballots.
- Configuring and programming the Verity Print ballot production device.
- Preparing media for voting devices.
- Configuring and programming the Verity Scan digital scanners.
- Configuring and programming the Verity Touch Writer BMD devices.
- Configuring and programming the Verity Touch and Verity Controller DRE voting components.
- Producing the election definition and auditing reports.
- Providing administrative management functions for user, database, networking and system management.
- Tabulation of Cast Vote Records from Verity Scan, Verity Central, and Verity Controller devices.
- Preview and validation of the election results.
- Producing election results tally according to voting variations and election system rules.
- Producing a variety of reports of the election results in the desired format.
- Auditing of election results including ballot images, cast vote records, and log files.

Verity Scan is a digital scanning device that is used in conjunction with an external ballot box. The unit is designed to scan marked paper ballots, interpret and record voter marks on the paper ballot and deposit the ballots into the secure ballot box. Verity Scan is capable of tabulating votes, or producing a ballot count report which includes quantities of ballots scanned.

Verity Touch Writer is a standalone Ballot Marking Device (BMD) which also includes an Audio Tactile Interface (ATI), which allows voters who cannot complete a paper ballot to generate a machine-readable and human readable paper ballot, based on vote selections made.

Verity Controller is a polling place device that is used to activate and accumulate results from a range of 1 to 12 Verity Touch/Verity Touch with Access DREs daisy chained to Verity Controller.

Verity Touch is a Direct Recording Electronic (DRE) device that allows a voter to cast his/her vote electronically via touch screen.

Verity Touch with Access is a Direct Recording Electronic (DRE) device that allows a voter to cast his/her vote electronically via touch screen, or via the Verity Access Audio Tactile Interface.

Verity Print is an on-demand ballot printing solution for paper ballots.

Verity Election Management allows users to import and manage elections. Imported elections are available through the “Elections” chevron in Build. Users can also delete, archive, restore, and rename the elections.
Verity User Management enables users with the correct role and permissions to create and manage user accounts within the Verity Voting system for the local workstation in a standalone configuration, or for the network in a networked configuration.

Verity Desktop enables users with the correct roles to set the workstations’ date and time, gather Verity application hash codes (in order to validate the correctness of the installed applications), and access to Windows desktop.

Verity Data provides the users capabilities to input jurisdiction- and election-specific data for paper and electronic ballots, as well as audio for accessible electronic ballots. Verity Data also includes capabilities to allow proofing of data, layout, and audio created. Verity Data also performs validation on the exported information to ensure that it is ready for use in Verity Build.

Verity Build allows users to proof data, view reports, create election definitions, print ballots, and create election media (vDrives). Build also allows users to configure settings for Verity Scan digital scanners, Verity Touch Writer BMD devices, and Verity Controller, Touch and Touch with Access devices.

Verity Central is a high-speed, central digital ballot scanning system used for high volume processing of ballots (such as vote by mail). The unit is based on COTS scanning hardware coupled with the custom Hart-developed ballot processing application software, which resides on an attached COTS workstation.

Verity Count is an application that tabulates election results and generates reports. Verity Count can also be used to collect and store all election logs from every Verity component/device used in the election, allowing for complete election audit log reviews.

Mark definition:
System supports marks that cover a minimum of 4% of the rectangular marking area.

Tested Marking Devices:
System supports Black and Blue ball point pens; testing was performed with black, blue, orange, and red pens.

Language capability:
System supports English and Spanish; system is capable of supporting other languages, including ideographic languages.
Components Included:
This section provides information describing the components and revision level of the primary components included in this Certification.

<table>
<thead>
<tr>
<th>System Component</th>
<th>Software or Firmware Version</th>
<th>Hardware Version</th>
<th>Operating System or COTS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verity Data</td>
<td>2.0.2</td>
<td></td>
<td></td>
<td>Data management software</td>
</tr>
<tr>
<td>Verity Build</td>
<td>2.0.2</td>
<td></td>
<td></td>
<td>Election definition software</td>
</tr>
<tr>
<td>Verity Central</td>
<td>2.0.2</td>
<td></td>
<td></td>
<td>High speed digital scanning software</td>
</tr>
<tr>
<td>Verity Count</td>
<td>2.0.2</td>
<td></td>
<td></td>
<td>Tabulation and reporting software</td>
</tr>
<tr>
<td>Verity Scan</td>
<td>2.0.2</td>
<td></td>
<td></td>
<td>Digital scanning device firmware</td>
</tr>
<tr>
<td>Verity Touch Writer</td>
<td>2.0.3</td>
<td></td>
<td></td>
<td>Accessible BMD firmware</td>
</tr>
<tr>
<td>System Component</td>
<td>Software or Firmware Version</td>
<td>Hardware Version</td>
<td>Operating System or COTS</td>
<td>Comments</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Verity Controller</td>
<td>2.0.3</td>
<td></td>
<td></td>
<td>DRE polling place management console firmware</td>
</tr>
<tr>
<td>Verity Touch</td>
<td>2.0.3</td>
<td></td>
<td></td>
<td>DRE firmware</td>
</tr>
<tr>
<td>Verity Touch with Access</td>
<td>2.0.3</td>
<td></td>
<td></td>
<td>DRE firmware</td>
</tr>
<tr>
<td>Verity Print</td>
<td>2.0.3</td>
<td></td>
<td></td>
<td>On demand ballot printing device firmware</td>
</tr>
<tr>
<td>Verity Device Microcontroller</td>
<td>V17</td>
<td></td>
<td></td>
<td>Firmware for Verity devices</td>
</tr>
<tr>
<td>Verity Operating System – Data, Build, Central, Count</td>
<td>6.1.7601</td>
<td>Microsoft Operating System</td>
<td>Windows Embedded Standard 7 w/ service pack 1, 64 bit</td>
<td></td>
</tr>
<tr>
<td>Application control – Data, Build, Central, Count, Print, Scan, Touch Writer, Touch Writer, Touch, Touch with Access, Print</td>
<td>6.1.1.369</td>
<td>COTS: McAfee Application Control</td>
<td>Configured for Verity workstations and devices</td>
<td></td>
</tr>
<tr>
<td>Framework – Data, Build, Central, Count, Print, Scan, Touch Writer, Controller, Touch, Touch with Access, Print</td>
<td>4.0.30319; 4.5.50709</td>
<td>COTS: Microsoft .NET 4.x Framework</td>
<td>Unmodified</td>
<td></td>
</tr>
<tr>
<td>Database – Data, Build, Central & Count</td>
<td>11.00.2100</td>
<td>COTS: Microsoft SQL Server 2012 for Embedded Systems</td>
<td>Unmodified</td>
<td></td>
</tr>
<tr>
<td>Runtime Libraries – Data, Build, Central, Count, Print, Scan, Touch Writer, Controller, Touch, Touch with Access, Print</td>
<td>8.0.56336</td>
<td>COTS: Microsoft Visual Studio C++ 2005</td>
<td>Unmodified</td>
<td></td>
</tr>
<tr>
<td>Runtime Libraries – Data, Build, Central, Count, Print, Scan, Touch Writer, Controller, Touch, Touch with Access, Print</td>
<td>10.0.40219</td>
<td>COTS: Microsoft Visual Studio C++ 2010</td>
<td>Unmodified</td>
<td></td>
</tr>
<tr>
<td>Verity Device Operating System – Scan, Touch Writer, Controller, Touch, Touch with Access, Print</td>
<td>6.1.7601</td>
<td>Microsoft Operating System</td>
<td>Windows Embedded Standard 7 w/ service pack 1, 32 bit</td>
<td></td>
</tr>
<tr>
<td>System Component</td>
<td>Software or Firmware Version</td>
<td>Hardware Version</td>
<td>Operating System or COTS</td>
<td>Comments</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Database – Print, Scan, Touch Writer, Controller, Touch, Touch with Access</td>
<td>11.00.2100</td>
<td></td>
<td>COTS: Microsoft SQL Server Express</td>
<td>Unmodified</td>
</tr>
<tr>
<td>Verity Scan</td>
<td></td>
<td>Revision C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verity Touch Writer</td>
<td></td>
<td>Revision C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verity Print</td>
<td></td>
<td>Revision B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verity Controller</td>
<td></td>
<td>Revision B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verity Touch</td>
<td></td>
<td>Revision B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verity Touch with Access</td>
<td></td>
<td>Revision B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verity Key</td>
<td></td>
<td>N/A</td>
<td>COTS: Maxim iButton</td>
<td>Security key used with voting system</td>
</tr>
<tr>
<td>Verity vDrive</td>
<td></td>
<td>N/A</td>
<td>COTS: Apacer</td>
<td>4GB USB flash drive, portable electronic media used for transportation of voting system data</td>
</tr>
<tr>
<td>Ballot/Report Printer – Data, Build, Central, Count, Touch Writer, Print</td>
<td></td>
<td>B431d</td>
<td>COTS: Okidata</td>
<td></td>
</tr>
<tr>
<td>Ballot Printer – Build, Print</td>
<td></td>
<td>C911</td>
<td>COTS: Okidata</td>
<td></td>
</tr>
<tr>
<td>Ballot Printer – Build, Print</td>
<td></td>
<td>C831</td>
<td>COTS: Okidata</td>
<td></td>
</tr>
<tr>
<td>Scanner - Central</td>
<td></td>
<td>I5600</td>
<td>COTS: Kodak</td>
<td></td>
</tr>
<tr>
<td>Scanner - Central</td>
<td></td>
<td>DR-G1100</td>
<td>COTS: Canon</td>
<td></td>
</tr>
<tr>
<td>Scanner - Central</td>
<td></td>
<td>DR-G1130</td>
<td>COTS: Canon</td>
<td></td>
</tr>
<tr>
<td>Workstation – Data, Build, Central & Count</td>
<td></td>
<td></td>
<td>COTS: Intel – Windows Workstation</td>
<td>Recommended specs: 3.0GHz, Quad Core, Memory – 8GB, Hard Drive – RAID-Level 1, Ethernet Port – 100Mb/1Gb, USB Ports, Video Card - Integrated Graphics, Keyboard - USB Keyboard, Mouse - USB Mouse, Wireless telecommunications not configured or implemented.</td>
</tr>
<tr>
<td>System Component</td>
<td>Software or Firmware Version</td>
<td>Hardware Version</td>
<td>Operating System or COTS</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>------------------------------</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Monitor – Data, Build, Central & Count</td>
<td></td>
<td></td>
<td></td>
<td>Recommended specs:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Aspect Ratio - Widescreen (16:9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minimum resolution 1366x768</td>
</tr>
</tbody>
</table>
System Limitations
This table depicts the limits the system has been tested and certified to meet.

<table>
<thead>
<tr>
<th>Element</th>
<th>Limit Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precincts</td>
<td>2,000</td>
</tr>
<tr>
<td>Splits per Precinct</td>
<td>20</td>
</tr>
<tr>
<td>Total Precincts + Splits in an election</td>
<td>2,000</td>
</tr>
<tr>
<td>Districts For voting devices and applications</td>
<td>75</td>
</tr>
<tr>
<td>Parties in a General Election</td>
<td>24</td>
</tr>
<tr>
<td>Parties in a Primary Election</td>
<td>10</td>
</tr>
<tr>
<td>Contests and Propositions combined</td>
<td>200</td>
</tr>
<tr>
<td>Contest Choices in a Contest</td>
<td>75</td>
</tr>
<tr>
<td>Total Contest Choices (voting positions) in an election</td>
<td>600</td>
</tr>
<tr>
<td>Maximum length of contestant name</td>
<td>100 characters</td>
</tr>
<tr>
<td>Maximum write-in length</td>
<td>25 characters</td>
</tr>
<tr>
<td>Ballot Styles</td>
<td>N/A</td>
</tr>
<tr>
<td>Voting Types</td>
<td>5</td>
</tr>
<tr>
<td>Maximum Polling Places per election</td>
<td>1200</td>
</tr>
<tr>
<td>Maximum devices per election</td>
<td>2400</td>
</tr>
<tr>
<td>Maximum number of central count scanners in a single network</td>
<td>4</td>
</tr>
<tr>
<td>Media Device – Scan voting device</td>
<td>9999 sheets per vDrive</td>
</tr>
<tr>
<td>Media Device – Central application</td>
<td>80000 sheets per vDrive</td>
</tr>
<tr>
<td>Number of voters definable per election</td>
<td>1000000</td>
</tr>
<tr>
<td>Max. sheets per ballot</td>
<td>4 sheets</td>
</tr>
<tr>
<td>Scan - single sheet ballot</td>
<td>9999 Ballots</td>
</tr>
<tr>
<td>Scan - two sheet ballot</td>
<td>4999 Ballots</td>
</tr>
<tr>
<td>Scan - three sheet ballot</td>
<td>3333 Ballots</td>
</tr>
<tr>
<td>Scan – four sheet ballot</td>
<td>2499 Ballots</td>
</tr>
<tr>
<td>Central</td>
<td>1000000 Ballots</td>
</tr>
<tr>
<td>Count</td>
<td>4000000 CVRs, 1200 vDrives</td>
</tr>
<tr>
<td>Ballot Sizes</td>
<td>8.5" x 11", 8.5" x 14", 8.5" x 17", 8.5" x 19", 11" x 17"</td>
</tr>
</tbody>
</table>

Functionality

2005 VVSG Supported Functionality Declaration

<table>
<thead>
<tr>
<th>Feature/Characteristic</th>
<th>Yes/No</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feature/Characteristic</td>
<td>Yes/No</td>
<td>Comment</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Voter Verified Paper Audit Trails</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>VVPAT</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Accessibility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward Approach</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Parallel (Side) Approach</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Closed Primary</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Primary: Closed</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Open Primary</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Primary: Open Standard (provide definition of how supported)</td>
<td>Yes</td>
<td>Open Primary</td>
</tr>
<tr>
<td>Primary: Open Blanket (provide definition of how supported)</td>
<td>Yes</td>
<td>General “top two”</td>
</tr>
<tr>
<td>Partisan & Non-Partisan:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partisan & Non-Partisan: Vote for 1 of N race</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Partisan & Non-Partisan: Multi-member (“vote for N of M”) board races</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Partisan & Non-Partisan: “vote for 1” race with a single candidate and write-in voting</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Partisan & Non-Partisan “vote for 1” race with no declared candidates and write-in voting</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Write-In Voting:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write-in Voting: System default is a voting position identified for write-ins.</td>
<td>No</td>
<td>By default, the number of write-ins available in a contest is zero, users may increment as necessary</td>
</tr>
<tr>
<td>Write-in Voting: Without selecting a write in position</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Write-in: With No Declared Candidates</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Write-in: Identification of write-ins for resolution at central count</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Primary Presidential Delegation Nominations & Slates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Presidential Delegation Nominations: Displayed delegate slates for each presidential party</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Slate & Group Voting: one selection votes the slate.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ballot Rotation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotation of Names within an Office; define all supported rotation methods for location on the ballot and vote tabulation/reporting</td>
<td>Yes</td>
<td>Rotation by precinct and precinct split</td>
</tr>
<tr>
<td>Straight Party Voting:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Straight Party: A single selection for partisan races in a general election</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Straight Party: Vote for each candidate individually</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Straight Party: Modify straight party selections with crossover votes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Straight Party: A race without a candidate for one party</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Straight Party: "N of M race (where "N">1)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Straight Party: Excludes a partisan contest from the straight party selection</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Cross-Party Endorsement:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cross party endorsements, multiple parties endorse one candidate.</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Split Precincts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Split Precincts: Multiple ballot styles</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Feature/Characteristic</td>
<td>Yes/No</td>
<td>Comment</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Split Precincts: P & M system support splits with correct contests and ballot</td>
<td></td>
<td>identification of each split</td>
</tr>
<tr>
<td>Split Precincts: DRE matches voter to all applicable races.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Split Precincts: Reporting of voter counts (# of voters) to the precinct split</td>
<td>Yes</td>
<td>level; Reporting of vote totals is to the precinct level</td>
</tr>
<tr>
<td>Vote N of M:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vote for N of M: Counts each selected candidate, if the maximum is not exceeded.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Vote for N of M: Invalidates all candidates in an overvote (paper)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Recall Issues, with options:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recall Issues with Options: Simple Yes/No with separate race/election, (Vote Yes or No</td>
<td>Yes</td>
<td>Question)</td>
</tr>
<tr>
<td>Recall Issues with Options: Retain is the first option, Replacement candidate for the</td>
<td>Yes</td>
<td>second or more options (Vote 1 of M)</td>
</tr>
<tr>
<td>Recall Issues with Options: Two contests with access to a second contest</td>
<td>No</td>
<td>conditional upon a specific vote in contest one. (Must vote Yes to vote in</td>
</tr>
<tr>
<td>Recall Issues with Options: Two contests with access to a second contest</td>
<td>No</td>
<td>2nd contest.)</td>
</tr>
<tr>
<td>Cumulative Voting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative Voting: Voters are permitted to cast, as many votes as there are seats to</td>
<td>Yes</td>
<td>be filled for one or more candidates. Voters are not limited to giving</td>
</tr>
<tr>
<td>Ranked Order Voting</td>
<td></td>
<td>only one vote to a candidate. Instead, they can put multiple votes on</td>
</tr>
<tr>
<td>Ranked Order Voting: Voters can write in a ranked vote.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ranked Order Voting: A ballot stops being counting when all ranked choices have been</td>
<td>N/A</td>
<td>eliminated</td>
</tr>
<tr>
<td>Ranked Order Voting: A ballot with a skipped rank counts the vote for the next rank.</td>
<td>N/A</td>
<td>Tabulation rules are unique per jurisdiction</td>
</tr>
<tr>
<td>Ranked Order Voting: Voters rank candidates in a contest in order of choice. A candidate</td>
<td>N/A</td>
<td>Tabulation rules are unique per jurisdiction</td>
</tr>
<tr>
<td>Ranked Order Voting: A ballot with two choices ranked the same, stops being counted at</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Ranked Order Voting: The total number of votes for two or more candidates with the</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Provisional or Challenged Ballots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feature/Characteristic</td>
<td>Yes/No</td>
<td>Comment</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Provisional/Challenged Ballots: A voted provisional ballots is identified but not included in the tabulation, but can be added in the central count.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Provisional/Challenged Ballots: A voted provisional ballots is included in the tabulation, but is identified and can be subtracted in the central count</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Provisional/Challenged Ballots: Provisional ballots maintain the secrecy of the ballot.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Overvotes (must support for specific type of voting system)</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Overvotes: P & M: Overvote invalidates the vote. Define how overvotes are counted.</td>
<td>Yes</td>
<td>If the system detects more than the valid number of marks in a contest, it is counted as an overvote</td>
</tr>
<tr>
<td>Overvotes: DRE: Prevented from or requires correction of overvoting.</td>
<td>Yes</td>
<td>DRE prevents overvotes</td>
</tr>
<tr>
<td>Overvotes: if a system does not prevent overvotes, it must count them. Define how overvotes are counted.</td>
<td>Yes</td>
<td>If the system detects more than the valid number of marks in a contest, it is counted as an overvote</td>
</tr>
<tr>
<td>Overvotes: DRE systems that provide a method to data enter absentee votes must account for overvotes.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Undervotes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Undervotes: System counts undervotes cast for accounting purposes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Blank Ballots</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Totally Blank Ballots: Any blank ballot alert is tested.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Totally Blank Ballots: If blank ballots are not immediately processed, there must be a provision to recognize and accept them</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Totally Blank Ballots: If operators can access a blank ballot, there must be a provision for resolution.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Networking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide Area Network – Use of Modems</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Wide Area Network – Use of Wireless</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Local Area Network – Use of TCP/IP</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Local Area Network – Use of Infrared</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Local Area Network – Use of Wireless</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>FIPS 140-2 validated cryptographic module</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Used as (if applicable):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precinct counting device</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Central counting device</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>
Certification Test Report
Report Number HRT-3276 CTR 01
Hart InterCivic Verity Voting 2.0
Certification Test Report version 1.1
April 14th 2016

Prepared for:

<table>
<thead>
<tr>
<th>Vendor Name</th>
<th>Hart InterCivic Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vendor System</td>
<td>Verity Voting 2.0</td>
</tr>
<tr>
<td>EAC Application No.</td>
<td>HRT1501</td>
</tr>
</tbody>
</table>
| Vendor Address | 15500 Wells Port Drive
 | Austin, TX 78728 |

Prepared by:

SLI Compliance℠
4720 Independence St.
Wheat Ridge, CO 80033
303-422-1566
www.SLICompliance.com

NVLAP®
NVLAP LAB CODE 200733-0

Accredited by the National Institute of Standards and Technology (NIST) National Voluntary Lab Accreditation Program (NVLAP), and accredited by the Election Assistance Commission (EAC) for VSTL status.
Revision History

<table>
<thead>
<tr>
<th>Release</th>
<th>Author</th>
<th>Revisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>v1.0</td>
<td>M. Santos</td>
<td>Initial Release; submitted to EAC for approval</td>
</tr>
<tr>
<td>v1.1</td>
<td>M. Santos</td>
<td>Updates for EAC comments</td>
</tr>
<tr>
<td>v1.2</td>
<td>M. Santos</td>
<td>Removal of yellow highlights</td>
</tr>
</tbody>
</table>

Disclaimer
The Certification Test results reported herein must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. Results herein relate only to the items tested.

Copyright © 2016 SLI Compliance

Trademarks
- SLI is a registered trademark of SLI Compliance, a Division of Gaming Laboratories International, LLC.
- Intel and Pentium are registered trademarks of Intel Corporation.
- Microsoft, MS are registered trademarks and Internet Explorer, Windows, Visual C++, Visual Basic, VBX, ODBC, and MFC are trademarks of Microsoft Corporation.
- Verity is a trademark of Hart InterCivic Inc.
- All other products and company names are used for identification purposes only and may be trademarks of their respective owners.

The tests referenced in this document were performed in a controlled environment using specific systems and data sets, and results are related to the specific items tested. Actual results in other environments may vary.

Opinions and Interpretations
There are no SLI opinions or interpretations included in this report beyond the final recommendation.

Other Labs Performing Hardware Testing
SLI Compliance is responsible for all core voting system tests as identified in NIST NVLAP Handbook 150-22 (2008). Regarding non-core hardware testing for this certification test campaign, this report contains data that were produced under subcontract by the following lab(s):

Table 1 – Labs Performing Hardware Testing

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Address</th>
<th>Test(s)</th>
<th>Date(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>Address</td>
<td>Test(s)</td>
<td>Date(s)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Cascade TEK – Front Range</td>
<td>1530 Vista View Drive</td>
<td>Magnetic Fields Immunity, Electrical Power Disturbance</td>
<td></td>
</tr>
<tr>
<td>(A2LA certified for</td>
<td>Longmont, CO 80504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mechanical including MIL STD 810)</td>
<td></td>
<td>MIL-STD-810D Tests:</td>
<td>1/18/2016 -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bench Handling, Vibration, Low Temperature, High</td>
<td>2/1/2016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Temperature, Humidity, Temperature/Power Variation,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and Reliability</td>
<td></td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

1 INTRODUCTION.. 6
1.1 References.. 6
1.2 Document Overview... 6

2 CERTIFICATION TEST BACKGROUND.. 8
2.1 PCA - Document and Source Code Reviews.. 8
2.2 FCA - Functional & System Testing and Sampling... 9
2.2.1 Test Methods.. 9
2.2.2 Terms and Abbreviations.. 11

3 SYSTEM IDENTIFICATION... 15
3.1 System Topology Diagram.. 15
3.2 Documentation... 16
3.3 Software and Firmware.. 16
3.4 Equipment (Hardware)... 18
3.5 Materials.. 19
3.6 Excluded Requirements... 20
3.7 Additional Functionality/Requirements.. 21

4 SYSTEM OVERVIEW... 22
4.1 Scope of the Hart InterCivic Verity Voting 2.0 Voting System......................... 22
4.2 Changes from Verity 1.0 to Verity 2.0... 24
4.2.1 Supported Languages.. 26
4.2.2 Supported Functionality.. 26
4.2.3 Ballot Standards.. 26

5 CERTIFICATION TEST RESULTS SUMMARY... 27
5.1 Source Code Review Summary... 27
5.2 Technical Data Package Review Summary... 30
5.3 Hardware Testing... 31
5.3.1 Operating Mode.. 32
5.4 Known Vulnerabilities Testing.. 34
5.5 Functional Testing Summary... 34
5.5.1 How each Device was tested... 34
5.5.2 How each Application was tested... 37
5.5.3 How different System Level Configurations were tested............................ 39
5.5.4 Test Suites Utilized... 39
5.6 Evaluation of Testing... 52
5.7 Environmental Hardware Test Summary.. 52
5.7.1 Evaluation of Environmental Hardware Testing.. 53
5.8 Quality Assurance and Configuration Management Audits............................ 54
5.9 Deficiencies Found During Testing... 54
5.9.1 Hardware Discrepancies.. 54
5.9.2 Documentation Discrepancies and Informationals .. 55
5.9.3 Source Code Discrepancies .. 55
5.9.4 Functional Discrepancies .. 55
5.9.5 Anomalies ... 56
5.10 Deficiencies .. 57
6 RECOMMENDATIONS ... 58
7 EAC CERTIFICATION & VOTING SYSTEM CONFIGURATION .. 58

List of Tables

TABLE 1 – LABS PERFORMING HARDWARE TESTING ... 2
TABLE 2 – TEST METHODS .. 9
TABLE 3 – TERMS AND ABBREVIATIONS .. 11
TABLE 4 – HART VERITY 2.0 SOFTWARE AND FIRMWARE .. 17
TABLE 5 – COTS SOFTWARE .. 17
TABLE 6 – HART VERITY 2.0 CUSTOM VOTING EQUIPMENT 18
TABLE 7 – HART VERITY 2.0 COTS EQUIPMENT .. 18
1 Introduction

SLI Compliance is submitting this test report as a summary of the certification testing efforts for the Hart InterCivic Verity 2.0 voting system, a modified system from Verity 1.0, as detailed in the section System Identification. The purpose of this document is to provide an overview of the certification testing effort and the findings of the testing effort for the Hart InterCivic Verity 2.0 voting system.

This effort included documentation review of the Technical Data Package, source code review, and testing of the Hart InterCivic Verity 2.0 voting system. Testing consisted of the development of a test plan, managing system configurations, executing a subset of test cases based on the Hart testing performed, component and system level tests prepared by SLI, and analysis of results. The review and testing was performed at SLI’s Denver, Colorado facility.

1.1 References

1. Election Assistance Commission Voluntary Voting System Guidelines version 1.0 (EAC VVSG 1.0), Volumes I & II

1.2 Document Overview

This document contains:

- The Introduction, which discusses the application tested/reviewed
- The Certification Test Background, which discusses the testing process
- The System Identification, which identifies hardware and software for the Hart InterCivic Verity 2.0 voting system
- The System Overview, which discusses the functionality of Hart InterCivic Verity 2.0 voting system software and firmware
- The Certification Tests, which are a summary of the testing effort
- The Recommendations section, which contains the final analysis of the testing effort
- EAC Certification & Voting System Configuration, which summarizes the voting system configuration
- Attachments as follows:
 - Attachment A – Warrant of Change Control for Verity 2.0
 - Attachment B1 - Record of Trusted Build 02-15-2016 Verity 2.0.0
 - Attachment B2 - Record of Trusted Build 03-08-2016 Verity 2.0.1
o Attachment B3 - Record of Trusted Build 03-22-2016 Verity 2.0.2
o Attachment B4 - Record of Trusted Build 03-30-2016 Verity 2.0.3
o Attachment C - List of Source Code Reviewed and Results
o Attachment D1 - NTS Longmont_200737_CL:HI_ISO-IEC 17025-2005
o Attachment D2 - NTS Longmont_Scope_Of_ACCREDIT_ISO-IEC 17025-2005
o Attachment D3 - CASCADE_ENV_A2LA_Scope_Of_ACCREDIT_ISO-IEC 17025-2005
o Attachment D4 - TUV audit report of TS3
o Attachment D5 - Verity 2.0_Safety_Report_TUV NRTL Safety Certificate U8 16 02 90917 002
o Attachment E1 - PCA Doc - System Security Spec Rev02
o Attachment E2 - PCA Doc - System Overview Rev01
o Attachment E3 - PCA Doc - System Operations Procs Rev02
o Attachment E4 - PCA Doc - System Maintenance Procs Rev01
o Attachment E5 - PCA Doc - System Hardware Spec Rev02
o Attachment E6 - PCA Doc - System Functionality Desc Rev02
o Attachment E7 - PCA Doc - Software Design_Spec Rev02
o Attachment E8 - PCA Doc - Quality Assurance Rev01
o Attachment E9 - PCA Doc - Personnel Deployment_Training Reqs Rev03
o Attachment E10 - PCA Doc - Configuration Management Plan Rev02
o Attachment E11 - PCA Doc - System Test_Verification Spec Rev03
o Attachment E12 - PCA Doc - System Change Notes Rev02
o Attachment F1 - Hart InterCivic Verity 2.0 VVSG EMC EMI Test Plan v2.0
o Attachment F2 - Hart InterCivic Verity 2.0 VVSG Hardware ENV Test Plan v2.0
o Attachment F3 - Lonestar EMC Test Plan A02
o Attachment G1 - Cascade Tek_CTC C1958A_Environmental_Bench Handling_Vibration_Low Temp_High Temp_Humidity_Temp Power VariationTest Report for Verity 2.0
o Attachment G2 - NTS Longmont_ETRB60122 revA_Radiated_Conducted_Emissions_Test Report for Verity 2.0
o Attachment G3 - NTS Longmont_TRB60122 revA_ Electro Susceptibility_EFT_Lightning Surge_CON RF_Magnetic Fields RF_ELEC Power DIST_Immunity Test Report for Verity 2.0
2 Certification Test Background

This section provides a brief overview of the EAC Certification Program and the activities involved in order for a voting system to be considered for certification against the VVSG 1.0 and the current EAC program manuals.

2.1 PCA - Document and Source Code Reviews

The Physical Configuration Audit (PCA) review of the Hart InterCivic Verity 2.0 documentation, submitted in the requisite Technical Data Package (TDP), was performed in order to verify conformance with the VVSG 1.0. Source code was reviewed for each software and firmware application declared within the Verity 2.0 voting system. As this is a modification test campaign, the source code was compared against the final code base of Verity 1.0, and changes were subject to review.

All PCA reviews were conducted in accordance with Volume II Section 2 of the VVSG 1.0, to demonstrate that the system meets the requirements. Results of the PCA documentation review can be found in section 5.2 of this Certification Test Report. Informational issues, which are errors that don't affect a VVS 1.0 requirement, such as minor typo's or incorrect labeling of a document (draft versus official), and Discrepancies such as formatting or versioning, incorrect processes, functionality descriptions and/or missing functionality or descriptions, in documentation were identified to Hart for resolution or comment. Additional details of the PCA documentation review can be found in Attachments E1-E12.
All PCA source code reviews were conducted in accordance with *Volume I Section 5.2 and Volume II Section 5* of the VVSG 1.0, to demonstrate that the system meets the requirements. Results of the PCA source code reviews can be found in Attachment C – List of Source Code Reviewed and Results. Inconsistencies or errors in the source code were identified to Hart for resolution or comment. Additional details of the source code review criteria can be found in Attachments J1-J2.

2.2 FCA - Functional & System Testing and Sampling

The Functional Configuration Audit (FCA) review of the test documentation submitted by Hart in the TDP was reviewed in order to verify testing of the voting system requirements defined in *Volume I Sections 2, 6, 7, and 9* of the VVSG 1.0.

SLI’s standard Test Suites were customized for the Hart*InterCivic Verity 2.0* voting system and conducted in accordance with *Volume II Section 6* of the VVSG 1.0, in conjunction with the functional testing. Simulations of elections were conducted to demonstrate a beginning-to-end business use case process for the Hart*InterCivic Verity 2.0* voting system.

2.2.1 Test Methods

All test methods employed are within the scope of SLI’s VSTL accreditation.

The following validated test methods were employed during this test campaign:

<table>
<thead>
<tr>
<th>SLI VSTL Test Method Name</th>
<th>Version Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM_Accessibility v1.0.doc</td>
<td>1/14/2014</td>
</tr>
<tr>
<td>TM_Accuracy v1.1.doc</td>
<td>12/16/2014</td>
</tr>
<tr>
<td>TM_Audit_Record_Data v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Ballot_and_Program_Installation_and_Control v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Ballot_Box v1.1.doc</td>
<td>3/28/2014</td>
</tr>
<tr>
<td>TM_Ballot_Counter v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Ballot_Formatting_and_Production v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Ballot_Rotation v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Basic_Election_Components v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Blanket_Open_PRIMARY_CREATION v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Closed_PRIMARY_ELECTION_CREATION v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Closing_the_Polls v1.0.doc</td>
<td>2/19/2014</td>
</tr>
<tr>
<td>TM_Error Message and Recovery v1.2.doc</td>
<td>12/16/2014</td>
</tr>
<tr>
<td>TM_HW_Integrity v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Maintainability v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>SLI VSTL Test Method Name</td>
<td>Version Date</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>TM_Non-Partisan v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Partisan Offices v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Performance v1.0.doc</td>
<td>2/21/2014</td>
</tr>
<tr>
<td>TM_Pre-Voting_Capabilities v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Provisional or Challenged Ballots v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Ranked_Order_Voting v1.0.doc</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>TM_Readiness v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Security_Access_Control v1.0.doc</td>
<td>2/19/2014</td>
</tr>
<tr>
<td>TM_Security_Access_Control_Measures v1.0.doc</td>
<td>2/19/2014</td>
</tr>
<tr>
<td>TM_Security_Physical_Security_Measures v1.0.doc</td>
<td>2/19/2014</td>
</tr>
<tr>
<td>TM_Security_Software_Security v1.0.doc</td>
<td>2/19/2014</td>
</tr>
<tr>
<td>TM_Split_Precincts v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Standard_Open_Primary_Creation v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Straight_Party_Voting v1.0.doc</td>
<td>1/13/2014</td>
</tr>
<tr>
<td>TM_Stress v1.0.doc</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>TM_System_Audit v1.0.doc</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>TM_Tally_and_Reporting v1.0.doc</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>TM_Usability v1.1.doc</td>
<td>12/16/2014</td>
</tr>
<tr>
<td>TM_Volume v1.0.doc</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>TM_Vote_for_N_of_M v1.0.doc</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>TM_Voting_Ballot_Rotation v1.0.doc</td>
<td>2/7/2014</td>
</tr>
<tr>
<td>TM_Voting_Capabilities v1.1.doc</td>
<td>12/16/2014</td>
</tr>
<tr>
<td>TM_Voting_Non-Partisan v1.0.doc</td>
<td>2/10/2014</td>
</tr>
<tr>
<td>TM_Voting_Partisan_Offices v1.0.doc</td>
<td>2/10/2014</td>
</tr>
<tr>
<td>TM_Voting_Precincts_and_Districts v1.0.doc</td>
<td>2/10/2014</td>
</tr>
<tr>
<td>TM_Voting_Straight_Party v1.0.doc</td>
<td>2/10/2014</td>
</tr>
<tr>
<td>TM_Voting_Vote_for_N_of_M v1.0.doc</td>
<td>2/19/2014</td>
</tr>
<tr>
<td>TM_Voting_Write-In v1.0.doc</td>
<td>2/10/2014</td>
</tr>
<tr>
<td>TM_Write-In v1.0.doc</td>
<td>2/10/2014</td>
</tr>
</tbody>
</table>

The above listed test methods are implemented in a complementary fashion: modules are employed from various methods to form suites. Suites include a logical sequence of functionality that is used to validate the requirement addressed by each module within the suite. Please see the Terms and Abbreviations table for additional information about Test Modules and Test Suites.
Deviations from, additions to, or exclusions from the test methods
There were no deviations from, additions to, or exclusions from any of the test methods used in this certification test campaign.

2.2.2 Terms and Abbreviations
This section details pertinent terms applicable within this report.

Table 3 – Terms and Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Association for Laboratory Accreditation</td>
<td>A2LA</td>
<td>A nonprofit, non-governmental, public service, membership society whose mission is to provide comprehensive services in laboratory accreditation and laboratory-related training.</td>
</tr>
<tr>
<td>Ballot Marking Device</td>
<td>BMD</td>
<td>An accessible computer-based voting system that produces a marked ballot (usually paper) that is the result of voter interaction with visual or audio prompts.</td>
</tr>
<tr>
<td>Cast Vote Record</td>
<td>CVR</td>
<td>Permanent record of all votes produced by a single voter whether in electronic, paper or other form. Also referred to as ballot image when used to refer to electronic ballots.</td>
</tr>
<tr>
<td>Central Count Scanner</td>
<td>CCS</td>
<td>High Speed Digital Scanner is a ballot scanning device typically located at a central count facility and is operated by an automated multi-sheet feeding capability.</td>
</tr>
<tr>
<td>Chevron (Arrows at top of current screen)</td>
<td>No Abbreviation</td>
<td>Verity software applications are organized around easy-to-follow workflows, with specific activities associated with “chevrons” or “arrows” in the application user interface.</td>
</tr>
<tr>
<td>Compact Flash card</td>
<td>CF</td>
<td>This is a type of flash memory card in a standardized enclosure often used in voting systems to store ballot and/or vote results data.</td>
</tr>
<tr>
<td>Compact Flash AST</td>
<td>CFAST</td>
<td>A compact flash media based on the Serial ATA bus rather than the Parallel ATA bus, used by the original Compact Flash.</td>
</tr>
<tr>
<td>Commercial Off the Shelf</td>
<td>COTS</td>
<td>Commercial, readily available hardware devices (such as card readers, printers or personal computers) or software products (such as operating systems, programming language compilers, or database management systems).</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Election Assistance Commission</td>
<td>EAC</td>
<td>An independent, bipartisan commission created by the Help America Vote Act (HAVA) of 2002 that operates the federal government's voting system certification program.</td>
</tr>
<tr>
<td>Election Management System</td>
<td>EMS</td>
<td>Typically a database management system used to enter jurisdiction information (district, precincts, languages, etc.) as well as election specific information (races, candidates, voter groups (parties), etc.). In addition, the EMS is also used to lay out the ballots, download the election data to the voting devices, upload the results and produce the final results reports.</td>
</tr>
<tr>
<td>Electromagnetic Compatibility</td>
<td>EMC</td>
<td>The goal of EMC is to validate the correct functioning of different equipment in the same environment and the avoidance of any interference effects between them.</td>
</tr>
<tr>
<td>(Verity) Chevron</td>
<td>No Abbreviation</td>
<td>Verity components use workflow chevrons. Workflow chevrons, arranged along the top of the screen, identify the function the user is currently viewing.</td>
</tr>
<tr>
<td>Institute of Electrical and Electronics Engineers</td>
<td>IEEE</td>
<td>A non-profit organization, IEEE is the world's leading professional association for the advancement of technology.</td>
</tr>
<tr>
<td>National Institute of Standards and Technology</td>
<td>NIST</td>
<td>A non-regulatory federal agency within the U.S. Dept. of Commerce. Its mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.</td>
</tr>
<tr>
<td>National Voluntary Laboratory Accreditation Program</td>
<td>NVLAP</td>
<td>A division of NIST that provides third-party accreditation to testing and calibration laboratories.</td>
</tr>
<tr>
<td>Physical Configuration Audit</td>
<td>PCA</td>
<td>The testing activities associated with the physical aspects of the system (hardware, documentation, builds, source code, etc.).</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Primary – Blanket</td>
<td></td>
<td>The Blanket Primary election combines all candidates for a given contest, regardless of political affiliation, into the same contest. This is done with the same presentation as in a general election with the one difference being that there may be multiple candidates from each party listed. From the Verity 2.0 perspective, this election is treated as if it were a general election.</td>
</tr>
<tr>
<td>Primary – Closed</td>
<td></td>
<td>The Closed Primary election segregates each political party onto its own ballot, along with all pertinent non-political contests and referendums.</td>
</tr>
<tr>
<td>Primary - Open</td>
<td></td>
<td>The Open Primary election combines all political parties’ contests onto a single ballot, along with all pertinent non-political contests and referendums.</td>
</tr>
<tr>
<td>Precinct Count Scanner</td>
<td>PCS</td>
<td>A precinct-count optical scanner is a mark sense-based ballot and vote counting device located at a precinct and is typically operated by scanning one ballot at a time.</td>
</tr>
<tr>
<td>Request For Information</td>
<td>RFI</td>
<td>A form used by testing laboratories to request, from the EAC, interpretation of a technical issue related to testing of voting systems.</td>
</tr>
<tr>
<td>Requirements Matrix</td>
<td>N/A</td>
<td>This is the matrix created by the EAC and maintained by SLI that traces the requirements to the various test modules and test methods.</td>
</tr>
<tr>
<td>Standard Lab Procedure</td>
<td>SLP</td>
<td>SLI’s quality system documentation is made up of standard lab procedures (SLPs), which are procedures required to ensure a systematic, repeatable and accurate approach to voting systems testing and governing the actual performance of SLI’s work.</td>
</tr>
<tr>
<td>(Verity) Tab</td>
<td>No Abbreviation</td>
<td>Verity software applications are organized around easy-to-follow workflows and activities; a "Tab" provides specific activities associated with "chevron" workflows in the application user interface.</td>
</tr>
<tr>
<td>Voting Center</td>
<td></td>
<td>Typically a convenience voting location that manages multiple ballot styles.</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Technical Data Package</td>
<td>TDP</td>
<td>This is the data package that is supplied by the vendor and includes: Functional Requirements, Specifications, End-user documentation, Procedures, System Overview, Configuration Management Plan, Quality Assurance Program, and manuals for each of the required hardware, software, firmware components of each voting system.</td>
</tr>
<tr>
<td>Test Method</td>
<td>No Abbreviation</td>
<td>SLI proprietary documents which are designed to group sets of EAC VVSG requirements in a logical manner that can be utilized to efficiently validate where and how requirements, or portions of a requirement, are met.</td>
</tr>
<tr>
<td>Test Module</td>
<td>No Abbreviation</td>
<td>An actionable component of a Test Method, that functionally verifies that a requirement is met within a voting system. Test Modules are at a generic level within the Test Method, and are customized for a particular voting system, within a Test Suite.</td>
</tr>
<tr>
<td>Test Suite</td>
<td>No Abbreviation</td>
<td>An actionable grouping of test modules designed to test a set of functions of a voting system or component in a specific way.</td>
</tr>
<tr>
<td>Validation</td>
<td>No Abbreviation</td>
<td>Confirmation by examination and through provision of objective evidence that the requirements for a specific intended use or application have been fulfilled (ISO 9000)</td>
</tr>
<tr>
<td>Verification</td>
<td>No Abbreviation</td>
<td>Confirmation by examination and through provision of objective evidence that specified requirements have been fulfilled (ISO 9000)</td>
</tr>
<tr>
<td>Voluntary Voting Systems Guidelines</td>
<td>VVSG</td>
<td>A set of specifications and requirements against which voting systems can be tested to determine if the systems provide all of the basic functionality, accessibility and security capabilities required of these systems.</td>
</tr>
<tr>
<td>Voting System Test Lab</td>
<td>VSTL</td>
<td>The accredited lab where the voting system is being tested.</td>
</tr>
<tr>
<td>Voting System Under Test</td>
<td>VSUT</td>
<td>The designation for a voting system that is currently being tested.</td>
</tr>
<tr>
<td>Voting Test Specialist</td>
<td>VTS</td>
<td>An SLI Compliance employee who has been qualified to perform EAC voting system certification testing.</td>
</tr>
</tbody>
</table>
3 System Identification

The Hart InterCivic Verity 2.0 voting system was submitted for certification testing with the documentation, hardware and software listed below. No other Hart product was included in this test effort.

3.1 System Topology Diagram

Overview of the diagram:
- The components are displayed as touch points of data access, transfers, and verification.
- Dotted lines show the flow of data and air gaps using Verity vDrives.
• Verity Data and Verity Build are pre-election applications used to create the election
• The Verity Controller, Verity Touch/Verity Touch with Access, Verity Touch Writer
 and Verity Scan components are part of the Polling Place setup.
• Verity Central is a central count location component that utilizes high speed
 scanners for high volume scanning of marked ballots.
• Verity Print is part of the voting center setup
• Verity Count tabulates election results and generates reports
• Verity Key (not shown) is required for user access into components to load
 elections, use features, and generate reports. Feature access depends on the roles
 applied to user accounts.

3.2 Documentation
The TDP User/Owner manuals that are deliverables of the certified system delivered to a
purchaser of the system are as follows:
• Verity Build Quick Reference Manual
• Verity Build Technical Reference Manual
• Verity Central Quick Reference Manual
• Verity Central Technical Reference Manual
• Verity Count Quick Reference Manual
• Verity Count Technical Reference Manual
• Verity Count Quick Reference Manual
• Verity Data Quick Reference Manual
• Verity Data Technical Reference Manual
• Verity Polling Place Operations Technical Reference Manual
• Verity Operational Guide

3.3 Software and Firmware
Any and all software/firmware that is to be used by the declared voting system whether
directly or indirectly, in a production environment, must be validated during the certification
process.

The software and firmware employed by Hart InterCivic Verity 2.0 consists of 2 types,
custom and commercial off the shelf (COTS). COTS applications were verified to be
pristine, or were subjected to source code review for analysis of any modifications and
verification of meeting the pertinent standards. For Software, the software was either
obtained directly from the 3rd party manufacturer, or was verified against digital signatures
obtained from the 3rd party manufacturer. For Hardware, the hardware was either shipped
directly from the 3rd party manufacturer, or the equipment was inspected to verify
conformance to the 3rd party manufacturer’s specifications.
Tables 4 and 5 below detail each application employed by the Hart InterCivic Verity 2.0 voting system.

Table 4 – Hart Verity 2.0 Software and Firmware

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Application(s)</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verity Data</td>
<td>Ballot setup software</td>
<td>2.0.2</td>
</tr>
<tr>
<td>Verity Build</td>
<td>EMS software</td>
<td>2.0.2</td>
</tr>
<tr>
<td>Verity Central</td>
<td>High speed digital scanner software</td>
<td>2.0.2</td>
</tr>
<tr>
<td>Verity Count</td>
<td>Central count location accumulation and tallying software</td>
<td>2.0.2</td>
</tr>
<tr>
<td>Verity Scan</td>
<td>Digital scanner firmware</td>
<td>2.0.3</td>
</tr>
<tr>
<td>Verity Touch Writer</td>
<td>BMD firmware</td>
<td>2.0.3</td>
</tr>
<tr>
<td>Verity Controller</td>
<td>Polling place device providing management of touch screen voting devices firmware</td>
<td>2.0.3</td>
</tr>
<tr>
<td>Verity Touch</td>
<td>DRE firmware</td>
<td>2.0.3</td>
</tr>
<tr>
<td>Verity Touch with Access</td>
<td>DRE firmware</td>
<td>2.0.3</td>
</tr>
<tr>
<td>Verity Print</td>
<td>Printer firmware</td>
<td>2.0.3</td>
</tr>
<tr>
<td>Verity Device Microcontroller</td>
<td>Firmware for Verity Devices</td>
<td>V17</td>
</tr>
</tbody>
</table>

Table 5 – COTS Software

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Application</th>
<th>Version</th>
<th>Verity Voting 2.0 Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft</td>
<td>Microsoft Windows Embedded Standard 7 with</td>
<td>6.1.7601</td>
<td>Data/Build, Data/Build + Count, Central, Count, Print, Scan, Touch Writer, Controller, Touch, Touch with Access</td>
</tr>
<tr>
<td></td>
<td>Service Pack 1 – 64bit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microsoft</td>
<td>Microsoft SQL Server 2012 for Embedded Systems</td>
<td>11.00.2100</td>
<td>Data/Build, Data/Build + Count, Central, Count</td>
</tr>
<tr>
<td>Microsoft</td>
<td>Microsoft SQL Server 2012 Express</td>
<td>11.00.2100</td>
<td>Print, Scan, Touch Writer, Controller, Touch, Touch with Access</td>
</tr>
<tr>
<td>McAfee</td>
<td>McAfee Application Control for Devices</td>
<td>6.1.1.369</td>
<td>Data/Build, Data/Build + Count, Central, Count, Print, Scan, Touch Writer, Controller, Touch, Touch with Access</td>
</tr>
</tbody>
</table>
3.4 Equipment (Hardware)

The hardware employed by Hart InterCivic Verity 2.0 consists of 2 types, custom and commercial off the shelf (COTS). COTS hardware was verified to be unmodified, or was subjected to review for analysis of any modifications and verification of meeting the pertinent standards.

Tables 6 and 7 below detail each device employed by the Hart InterCivic Verity 2.0 voting system.

Table 6 – Hart Verity 2.0 Custom Voting Equipment

<table>
<thead>
<tr>
<th>Hardware</th>
<th>Use</th>
<th>Model</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verity Scan</td>
<td>Precinct polling place digital scanner</td>
<td>2005350</td>
<td>B & B1</td>
</tr>
<tr>
<td>Verity Touch Writer</td>
<td>Precinct polling place Ballot Marking Device</td>
<td>2005352</td>
<td>C</td>
</tr>
<tr>
<td>Verity Print</td>
<td>Vote Center ballot printer</td>
<td>3005356</td>
<td>B</td>
</tr>
<tr>
<td>Verity Controller</td>
<td>Polling place management device for DRE devices</td>
<td>3005351</td>
<td>B</td>
</tr>
<tr>
<td>Verity Touch</td>
<td>Polling place DRE device</td>
<td>3005355</td>
<td>B</td>
</tr>
<tr>
<td>Verity Touch with Access</td>
<td>Polling place DRE device with disabilities access</td>
<td>3005353</td>
<td>B</td>
</tr>
<tr>
<td>Verity Key</td>
<td>Security key used within the voting system</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Verity vDrive</td>
<td>Media used for transportation of voting system data</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 7 – Hart Verity 2.0 COTS Equipment

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Hardware</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>OKIDATA (for Verity Build, Verity Central, Verity Touch Writer and Verity Count)</td>
<td>Ballot/Report Printer</td>
<td>B431d</td>
</tr>
<tr>
<td>OKIDATA (for Verity Build)</td>
<td>Ballot Printer</td>
<td>C911</td>
</tr>
<tr>
<td>OKIDATA (for Verity Build)</td>
<td>Ballot Printer</td>
<td>C831</td>
</tr>
<tr>
<td>Kodak (for Verity Central)</td>
<td>Ballot Scanner</td>
<td>i5600</td>
</tr>
<tr>
<td>Canon</td>
<td>Ballot Scanner</td>
<td>DR-G1100</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Hardware</td>
<td>Model</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>(for Verity Central)</td>
<td>Ballot Scanner</td>
<td>DR-G1130</td>
</tr>
<tr>
<td>Canon</td>
<td>Intel-Window Workstation (Recommended Requirements)</td>
<td></td>
</tr>
<tr>
<td>(for Verity Central)</td>
<td>Processor – x86-compatible, 3.0GHz, Quad Core</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Memory – 8GB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard Drive – 2 x 1 TB RAID-Level 1, Removable w/ key lock</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethernet Port – 100Mb/1Gb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USB Ports – 4 ports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Video Card - Integrated Graphics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keyboard - USB Keyboard</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mouse - USB Mouse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO Wireless technologies allowed: WiFi, Bluetooth, Aircard, etc.</td>
<td></td>
</tr>
<tr>
<td>Various</td>
<td>Monitor (Recommended Requirements)</td>
<td></td>
</tr>
<tr>
<td>(for Verity Build, Verity Central and Verity Count)</td>
<td>Panel Size - 50.8 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aspect Ratio - Widescreen (16:9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optimal Resolution - 1600 x 900 at 60 Hz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contrast Ratio - 1000:1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brightness - 250 cd/m² (typical)</td>
<td></td>
</tr>
</tbody>
</table>

3.5 Materials

The following test materials are required for the performance of testing including, as applicable, test ballot layout and generation materials, test ballot sheets, and any other materials used in testing.

- Ballots & Blank Ballot grade paper
- Thumb Drives
- Ballot marking pens
- Printer paper rolls
3.6 Excluded Requirements

In this section we identify VVSG 1.0 requirements that do not pertain to the declared system being certified. For this certification project Hart has elected not to support their Verity Relay transmission capabilities. As such, the table below enumerates the requirements that will not be subject to verification for this project.

<table>
<thead>
<tr>
<th>Requirements Not Under Test</th>
<th>Description</th>
<th>Reason for Exception</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3.1.f</td>
<td>Continue to cast ballots if telecomm failure</td>
<td>Telecomm casting of ballots/data not implemented</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Broadcasting results</td>
<td>Broadcasting is not supported</td>
</tr>
<tr>
<td>3.1.2.c</td>
<td>Biometric identification and authentication</td>
<td>No biometrics implemented</td>
</tr>
<tr>
<td>5.4.2.g</td>
<td>Public Networks</td>
<td>No public networks used</td>
</tr>
<tr>
<td>7.5</td>
<td>Telecommunications and Data Transmission</td>
<td>Telecomm and Data Transmission not implemented</td>
</tr>
<tr>
<td>7.6</td>
<td>Casting of ballots via telecommunications</td>
<td>Telecomm casting of ballots/data not implemented</td>
</tr>
<tr>
<td>7.7</td>
<td>Wireless Communications</td>
<td>Wireless communications not implemented</td>
</tr>
<tr>
<td>7.9</td>
<td>Voter Verifiable Paper Audit Trail</td>
<td>VVPAT not implemented</td>
</tr>
</tbody>
</table>
3.7 Additional Functionality/Requirements

A review of the Hart Technical Requirements Documentation (TRDs) resulted in SLI’s identification of some Hart functionality/requirements that are considered beyond the scope of the VVSG 1.0, but since they are in the declared system, will require (Volume II section 3.2.2 of the VVSG 1.0) review and verification. Additional functionality/requirements to be audited within the scope of this certification are detailed below.

Verity Security Requirements 4005464 A03

- Verity Desktop Systems that store critical election data shall be connectable to an Uninterruptable Power Supply that will provide sufficient power to allow the user to shut down the system gracefully.
- Verity shall not allow simultaneous access by the same user.
- The secure BIOS shall verify the chain of trust before allowing the system to boot.
- BIOS Verification
- The BIOS shall store a hash computed over the entire BIOS executable stored in persistent memory.
- Electronic keys shall work for one and only one election.
- The user must not be able to open multiple Verity Voting applications at the same time on a single computer.
- The following requirements shall apply to all Verity applications:
 - The user must not be able to start, open, or access any other applications on the computer while the Verity application is open.
 - The user must not be able to access Operating System functionality while the Verity application is open.

Verity Central TRD 4005453 A01

- The application shall NOT allow two users to access an individual ballot simultaneously.
- The application shall support up to 4 simultaneous client workstations per server.
- Each workstation connected to the server shall be required to have a unique Workstation Name.
- Before initiating scanning, the system shall verify that there is sufficient free space available to save and process all ballot images from the scan batch.
- The application shall allow the user to protect a contest, which when protected does not allow manual or automatic resolution actions to be performed on the contest during the adjudication process.
- Protected contests shall not allow manual resolution actions.
- Protected contests shall not be affected by the automatic resolution feature.
- The application shall allow the user to remove protection from a contest.
- The application shall include an interface for creating Recovery Media.
Verity Count TRD 4005454 A02

- Minimum vote threshold.
- *Note: Minimum Vote Threshold is used to notify Election officials of potential privacy issues when there are only a small number of voters in a category.*

Verity Polling Place Device Suite TRD 4005457 A03

- The title of the report shall be "Configuration Readiness Report".
- The report shall include a barcode.
- The barcode shall contain the following data:
 - The assigned polling place.
 - The device serial number.
 - The Election Media Device identifier.

4 System Overview

4.1 Scope of the Hart InterCivic Verity Voting 2.0 Voting System

This section provides a description of the scope of Hart InterCivic Verity Voting 2.0 voting system components:

- The Hart Verity Voting 2.0 voting system represents a set of software applications for pre-voting, voting and post-voting election project activities for jurisdictions of various sizes and political division complexities. Verity Voting 2.0 functions include:
 - Defining the political divisioning of the jurisdiction and organizing the election with its hierarchical structure, attributes and associations.
 - Defining the election events with their attributes such as the election name, date and type, as well as contests, candidates, referendum questions, voting locations and their attributes.
 - Preparing and producing ballots for polling place and absentee voting.
 - Preparing media for precinct voting devices and central count devices.
 - Configuring and programming the Verity Scan digital scanners.
 - Configuring and programming the Verity Touch Writer BMD devices.
 - Producing the election definition and auditing reports.
 - Providing administrative management functions for user, database, networking and system management.
 - Import or manual data entry of the Cast Vote Records from Verity Scan devices and Verity Central.
 - Preview and validation of the election results.
 - Producing election results tally according to voting variations and election system rules.
- Producing a variety of reports of the election results in the desired format.
- Publishing of the official election results.
- Auditing of election results including ballot images and log files.

- The **Verity Scan** is a digital scan ballot counter (tabulator) that is used in conjunction with an external ballot box. The unit is designed to scan marked paper ballots, interpret and record voter marks on the paper ballot and deposit the ballots into the secure ballot box.

- The **Verity Touch Writer** is a standalone precinct level Ballot Marking Device (BMD) which also includes an Audio Tactile Interface (ATI), which allows voters who cannot complete a paper ballot to generate a machine-readable and human readable paper ballot, based on vote selections made, using the ATI.

- **Verity Controller**, which is a polling place device that is used to activate and accumulate results from a range of 1 to 12 **Verity Touch/Verity Touch with Access** DREs daisy chained to **Verity Controller**.

- **Verity Touch**, which is a Direct Recording Electronic (DRE) device that allows a voter to cast their vote electronically via touch screen.

- **Verity Touch with Access**, which is a Direct Recording Electronic (DRE) device that allows a voter to cast their vote electronically via the **Verity Access** audio-tactile interface.

- **Verity Print**, which is a voting center ballot printing solution for paper ballots.

- **Verity Election Management** allows users with the Administrator role to import and manage election definitions. Imported election definitions are available through the Elections chevron in Build. Users can also delete, archive, and manage the election definitions.

- **Verity User Manager** enables users with the correct role and permissions to create and manage user accounts within the Verity Voting system for the local workstation in a standalone configuration, or for the network in a networked configuration.

- **Verity Election Manager** enables users, with the correct roles, to import election defining import files into the Verity voting system. This application also supports archiving, restoring and deleting elections.

- **Verity Desktop** enables users, with the correct roles, to set the workstations’ date and time, gather Verity application hash codes (in order to validate the correctness of the installed applications), and access to Windows desktop.

- **Verity Data**, which provides the user with controls for proofing of data, layout, and audio created. **Verity Data** also performs validation on the exported information to ensure that it will successfully import into **Verity Build**.

- **Verity Build** opens the election to proof data, view reports, and print ballots, and allows for configuring and programming the **Verity Scan** digital scanners, **Verity Touch Writer** BMD devices, **Verity Controller/Touch** and **Touch with Access** devices, as well as producing the election definition and auditing reports.
• **Verity Central** is a high-speed, central digital ballot scanning system used for high-volume processing of ballots (such as vote by mail). The unit is based on COTS scanning hardware coupled with the custom Hart developed ballot processing application software which resides on attached work-station.

• **Verity Count** is an application that tabulates election results and generates reports. Verity Count can be used to collect and store all election logs from every Verity component/device used in the election, allowing for complete election audit log reviews.

4.2 Changes from Verity 1.0 to Verity 2.0

Features new to Verity 2.0 include:

- **Verity Data**, which provides the user with controls for proofing of data, layout, and audio created. Verity Data also performs validation on the exported information to ensure that it will successfully import into Verity Build.

- **Verity Controller**, which is a polling place device that is used to activate and accumulate results from a range of 1 to 12 Verity Touch/Verity Touch with Access DREs daisy chained to Verity Controller.

- **Verity Touch**, which is a Direct Recording Electronic (DRE) device that allows a voter to cast their vote electronically via touch screen.

- **Verity Touch with Access**, which is a Direct Recording Electronic (DRE) device that allows a voter to cast their vote electronically via the Verity Access audio-tactile interface.

- **Verity Print**, which is a voting center ballot printing solution for paper ballots.

Updates to features from Verity Voting 1.0 to Verity Voting 2.0 include:

Build Changes

1. Verity Controller settings added to Election Settings screen
2. Verity Print settings added to Election Settings screen
3. Cumulative support in:
 a. Contest creation
 b. Ballot layout
 c. Data validation
 d. CSV export
 e. Reports
4. Add export functionality to electronic ballot preview
5. Change number of ranks in Ranked Choice Voting from 5 to 6
Central Changes

1. Cumulative voting mark analysis and adjudication
2. Resolve defect associated with Product Advisory dated 9/30/15 with Central write-in adjudication in a Straight Party contest
3. Change number of ranks in Ranked Choice Voting from 5 to 6

Count Changes

1. Change number of ranks in Ranked Choice Voting from 5 to 6
2. Provisional Ballot Support:
 a. Election Dashboard progress bar
 b. Support Provisional Ballot Retrieval Code in CVR
 c. New Provisional Ballots screen
 d. Help Tab content
 e. Provisional Ballot Status import/export
 f. Provisional Ballot Status report
 g. Provisional Ballot parsing logic
3. Support Touch/Controller on:
 a. Device Log report
 b. Voting Device report
 c. vDrive Status report
 d. Custom report filters
 e. Auditing dashboard filters
 f. Text write-in resolution changes
 i. Display in resolution screen
 ii. Auto-assign if exact match to existing write-in candidate

Verity Scan Changes

1. Cumulative voting mark analysis and second chance voting
2. Change number of ranks in Ranked Choice Voting from 5 to 6

Verity Touch Writer Changes

1. Cumulative Voting:
 a. Contest Display
 b. Vote Capture
 c. Help Screen Content
2. Aesthetic changes to Contest List screen
3. Add number of available choices to the contest audio
4. Add "Your ballot has N sheets" to the ballot printing audio
5. Change number of ranks in Ranked Choice Voting from 5 to 6
4.2.1 Supported Languages
The Hart Verity Voting 2.0 voting system supports the English and Spanish languages.

4.2.2 Supported Functionality

4.2.2.1 Voting Variations
Verity Voting 2.0 supports the following voting variations:

- Closed primary elections
- Blanket primary elections
- Open primary elections
- General elections
- Partisan offices
- Non-partisan offices
- Write-in voting
- Cumulative voting
- Primary presidential delegation nominations
- Ballot rotation
- Straight party voting
- Split precincts
- Vote for N of M

Note that Verity Voting 2.0 does not include Ranked Choice Voting as a fully implemented voting variation. Verity Data provides functionality to create contests of a Ranked Choice Voting variety. Verity Build will build a ballot to Ranked Choice voting, and the voting devices Verity Scan and Verity Touch Writer, as well as Verity Central will allow RCV selections by the voter and record them. Verity Count does not perform ranked choice processing; instead it will treat the 1st candidate selected as the candidate chosen. While the full functionality is not in place, SLI tested the implemented functional portions in their respective areas as listed.

4.2.3 Ballot Standards
Verity Build employs and supports the ballot standards as follows:

- Supports the following paper sizes:
 - 8.5" x 11"
 - 8.5" x 11" w/ 3" stub (8.5" x 14")
 - 8.5" x 14"
 - 8.5" x 14" w/ 3" stub (8.5" x 17")
 - 8.5" x 17"
• 8.5" x 17" w/ 2" stub (8.5" x 19")
• 11" x 17"
• Supports ballot layouts in portrait orientation.
• Supports duplex ballot layouts.
• Supports the inclusion of ballot stubs on paper ballots.
• Supports layouts for a variety of ballot types, including Test mode, Official mode, and Sample ballots.
• Compatible with the production of ballots on standard, commercially available white paper stock.

5 Certification Test Results Summary

5.1 Source Code Review Summary

SLI has reviewed the software source code for each application in the Hart InterCivic Verity 2.0 voting system to determine the code's compliance with Volume I Sections 5, 9 and Volume II Section 5.4 of the VVSG 1.0 and for compliance with Hart InterCivic's internally developed coding standards. Verity 2.0 is implemented with the C, C++ and C# languages. Results of the source code review are detailed in Attachment C. – List of Source Code Reviewed and Results.

The review was conducted for:

• **Software Integrity:** The module contains no self-modifying code. Software remains unchanged and retains its integrity. The module has defined array dimensions, which are positive constant integers.

• **Modularity:** The modules have a specific testable function; performing a single function; is uniquely named; follows a standard format, has a single entry point; has a single exit point (or deviates in an acceptable manner); has error handling; and acceptable module size

• **Control Constructs:** Logic flow utilizes standard constructs of the development language used; constructs are used consistently throughout the code; logic structure is not overly complex, and acceptable use of error handlers.

• **Naming Conventions:** Variable and Function names that clearly define the purpose of the variable or function. Use of standard notation for variables by type. Use of names that are unique for both global and local variables. Use of names that are unique for functions (except where it deviates in an accepted manner).
• **Coding Conventions:** Use of a standard methodology for the construction of a code module. This includes uniform calling sequences, parameter validation, a single executable statement per line, and status or error messages.

• **Comments Conventions:** Comment Header blocks for the module / function follows a standard format in its layout and content. In code comments are clearly delineated and readable.

Evaluation of Source Code

The source code was reviewed for compliance per the guidelines defined in *Volume II, Section 5.4.* of the VVSG 1.0. As a modification project, the **Verity 2.0** code base was reviewed using the final **Verity 1.0** code base as the initial drop, to which the initial **Verity 2.0** code base was compared. The differences found between those two code bases served as the starting point of the code review. The source code was found to be written adequately in terms of the VVSG 1.0. The code is modular and contains sufficient error handling. Readability is sufficient and supports maintainability.

The reviewer's assessment is based on the following observations:

• **Software Integrity**

 o There were no unbounded arrays. This follows the VVSG 1.0 requirements for software integrity.

 o No instances of self-modifying or dynamically loaded code were observed.

• **Modularity**

 o The code is modular and self-contained.

 o Modules perform only the specified functionality.

 o The requirement of single entry and exit points are complied with.

 o Modules are small enough to facilitate ease of reading and understanding.

• **Control Constructs**

 o Control Constructs used are in accordance with those allowed by the VVSG 1.0.

 o Loop control constructs have been appropriately chosen for the logical tasks to be accomplished. (There are, however, instances of loop constructs written to include early termination logic other than by the normal loop exit condition specification. The interpretation of the currently written VVSG 1.0 requirement is that this early loop termination logic is not disallowed by the VVSG 1.0 but it is a variation of the construct other than that described by the standard and was accepted. As the code is currently written there will be no problems caused by those loop controls; however, future changes to the
code should be performed with some caution to ensure that the system state is stable.)

- Modules have fewer than 6 levels of indented scope.
- Array boundaries are checked.

- Naming Conventions
 - Function and variable names are in accordance with the requirements of the VVSG 1.0.
 - Names differ by more than a single character and have been chosen as to enhance the readability of the code.
 - There are no instances of language keywords being used as a name for procedures or variables.

- Coding Conventions
 - Coding conventions employed are in compliance with the requirements of the VVSG 1.0.
 - Code is well structured and was written appropriately to the standards.

- Comments
 - Module headers are in compliance with the requirements of the VVSG 1.0.
 - In-line comments are sufficient in number and placement to facilitate a reasonable understanding of the code.
 - Variables have appropriate comments at the point of declaration.

- On the Application level, no more than 50% of the modules can exceed 60 lines, no more than 5% can exceed 120 lines, and none can exceed 240 lines without justification.
 - Functions/modules were within the VVSG 1.0 tolerances;
5.2 Technical Data Package Review Summary

SLI reviewed the Hart InterCivic Verity 2.0 TDP, as detailed in sections 3.1 and 3.4, for compliance according to Volume II Section 2 of the VVSG 1.0.

The review was conducted for the required content and format of:

- **System Security Specification**: (Attachment E1) Access control policy and measures, equipment and data security, software installation, telecommunications and data transmission security, elements of an effective security program.

- **System Overview**: (Attachment E2) System description and performance are adequately described.

- **System Operations Procedures**: (Attachment E3) Operation environment, system installation and test specifications, operational features, operating procedures, operations support.

- **System Maintenance Procedures**: (Attachment E4) Preventative and corrective maintenance procedures, maintenance equipment, facilities and support.

- **System Hardware Specification**: (Attachment E5) System Hardware Characteristics, Design and Construction.

- **System Functionality Description**: (Attachment E8) System functional processing capabilities, encompassing capabilities required by the Standards and any additional capabilities provided by the system, including a simple description of each capability.

- **Software Design and Specification**: (Attachment E7) Purpose and scope, applicable documents, software overview, software standards and conventions, software operating environment, software functional specification, programming specifications, system database, interfaces and appendices.

- **Quality Assurance Program**: (Attachment E8) Quality assurance policy, parts and materials special testing and examination, quality conformance inspections.

- **Personnel Deployment and Training Requirements**: (Attachment E9) Personnel resources and training required to operate and maintain the system.

- **Configuration Management**: (Attachment E10) Configuration management policy, configuration identification, procedures for baseline, promotion, demotion and configuration control, release process, configuration audits and management resources.

- **System Test and Verification Specifications**: (Attachment E11) Development and certification test specifications that Hart applied to their testing efforts.

- **System Change Notes**: (Attachment E12) Changes to a previously certified system (Verity 1.0).
Evaluation of TDP

Once initially identified, all TDP discrepancies were resolved. The Technical Data Package for the Hart InterCivic Verity 2.0 voting system was found to sufficiently comply with the standards such that a jurisdiction would be able appropriately deploy the Hart InterCivic Verity 2.0 voting system. Results of the PCA documentation review are detailed in Attachments E1-E12.

5.3 Hardware Testing

Hardware testing conducted specifically for this test campaign involved the Verity Controller, Touch and Touch with Access. That testing involved verification of the following requirements:

- VVSG 1.0 Vol. 1, Section 4 Hardware Requirements
- VVSG 1.0 Vol. 2, Section 4 Hardware Testing

SLI and their third-party certified hardware test laboratories, NTS Longmont formerly EMC Integrity, and Cascade TEK, performed an analysis and review of the Verity 2.0 voting system hardware components, namely Verity Controller, Touch and Touch with Access.

During execution of testing performed at the labs, an SLI representative was present to oversee the testing.

The test methodologies for all tests are identified in the following hardware test plans and hardware test reports:

- Attachment F1 - Hart interCivic Verity 2.0 VVSG EMC EMI Test Plan v2.0
- Attachment F2 - Hart InterCivic Verity 2.0 VVSG Hardware ENV Test Plan v2.0
- Attachment F3 - Lonestar EMC Test Plan A02
- Attachment G1 - Cascade Tek_CTC C1958A_Environmental_Bench Handling_Vibration_Low Temp_High Temp_Humidity_Temp Power VariationTest Report for Verity 2.0
- Attachment G2 - NTS Longmont_ETRB60122_revA_Radiated_Conducted_Emissions _Test Report for Verity 2.0
- Attachment G3 - NTS Longmont_TRB60122_revA_Electro Susceptibility _EFT_Lightning Surge_CON RF_Magnetic Fields RF_ELEC Power DIST_Immunity Test Report for Verity 2.0

Additionally, SLI conducted a review on Safety Reports:

"Attachment G4 - Verity 2.0_TUV Safety Report PTI-1411085-100_Att1_2_3."
"Attachment G5 - Verity 2.0_TUV Safety Report PTI-1411085-100_TRF_iec60950."

Conclusion: All critical components comply with IEC 60950-1: 2005, or relevant component standards.
5.3.1 Operating Mode

Prior to and during testing, proper operation of the equipment was confirmed. An operational status check was successfully performed prior to and after each test, verifying the equipment is within acceptable performance limits. Equipment was inspected for damages after each test. No issues were found.

The Verity software was not used during EMC tests because the hardware is only fully exercised while people are voting and casting their ballots. To exercise some of the features of each new Verity hardware device, test software was run during EMC tests to exercise the model's particular hardware features.

During EMC testing, the hardware was exercised via test software as follows:

Verity Controller:

- Check Status LEDs / Switches (before and after test)
 - Run Platform Configuration Utility (and leave it running)
 - Set poll worker LED to flashing (blue)
 - Set power source LED to amber
 - Check buttons/switches (before and after test)
 - Tablet Lock switch
 - Poll worker push button (on rear I/O panel)
 - Validation push button (in vDrive bay)
- Bar code scanner
 - Run notepad, make sure it is the active app
 - Scan a bar code before and after the test – the text should show up in Notepad
 - The bar code scanner remains plugged in during the test
- Thermal Printer (during test)
 - Run Thermal Printer EMI test – it should print the time/date on a new line about every 15 seconds
- File I/O test (during test)
 - Run the File I/O test – it writes data to the USB flash drive (vDrive) – the USB drive’s status LED should flash RED while data is being written
- Network Ping Test – sends 65,500 byte ICMP ping packets over the network to the Touch and Touch with Access (during test)
 - The Controller is IP Address: 192.168.0.100
 - ping 192.168.0.102 (the Touch)
 - ping 192.168.0.104 (the Touch with Access)
Verity Touch:

- Check Status LEDs / Switches (before and after test)
 - Run Platform Configuration Utility (and leave it running)
 - Set poll worker LED to flashing (blue)
 - Set power source LED to amber
 - Check buttons/switches (before and after test)
 - Tablet Lock switch
 - Poll worker push button (on rear I/O panel)
 - Validation push button (in vDrive bay)

- Network Ping Test – sends 65,500 byte ICMP ping packets over the network to the Controller and Touch with Access units (during test)
 - The Touch's IP Address: 192.168.0.102
 - ping 192.168.0.100 (the Controller)
 - ping 192.168.0.104 (the Touch with Access)

Verity Touch with Access:

- Check Status LEDs / Switches (before and after test)
 - Run Platform Configuration Utility (and leave it running)
 - Set poll worker LED to flashing (blue)
 - Set power source LED to amber
 - Check buttons/switches (before and after test)
 - Tablet Lock switch
 - Poll worker push button (on rear I/O panel)
 - Validation push button (in vDrive bay)

- Test ATI functionality (before and after test)
 - Run ATI Test program, verify it's the active window and then test the buttons and rotary on the ATI and also verify the Red Green Jelly Switches are working.

- Audio Test – plays an audio clip repeatedly to the headphones that are attached to the ATI (during test)

- Network Ping Test – sends 65,500 byte ICMP ping packets over the network to the Controller and Touch units (during test)
 - The Touch with Access's IP Address: 192.168.0.104
 - ping 192.168.0.100 (the Controller)
 - ping 192.168.0.102 (the Touch)
5.4 Known Vulnerabilities Testing

Hart Verity Voting 2.0 is a modification of Verity Voting 1.0, which has had only limited exposure in the field.

There are no known vulnerabilities to this particular system, the Hart Verity voting system (Verity 1.0 and Verity 2.0), at this time.

Review of the "Known Vulnerabilities" database, maintained by SLI, has provided 14 known vulnerabilities to previous Hart (non-Verity) systems already accounted for in SLI’s Test Methods.

Within the declared system, the only public facing components are the Verity Scan precinct optical scanner, which processes ballots marked by voters in a public polling place, Verity Touch Writer, a precinct place ballot marking device, these devices are included as part of the Verity Voting 1.0 voting system. New public facing components to Verity Voting 2.0 are polling place devices Verity Controller and Verity Touch/Verity Touch with Access, which are used in tandem as part of the Verity Voting 2.0 DRE solution to enable voters to cast ballots electronically. The voting center device Verity Printer is not a public facing component.

Verity Central is a central count location device, which is implemented in a secure environment.

5.5 Functional Testing Summary

SLI performed tests on each of the system configurations identified in Sections 3 and 4.2. of this test report. The testing incorporated end-to-end election scenarios testing the functionality supported by Hart.

5.5.1 How each Device was tested

Functionality was tested as identified below. The following functional areas exist for Hart InterCivic Verity 2.0 voting system.

5.5.1.1 Verity Touch Writer

- **Verity Touch Writer** is a standalone precinct level ballot marking device. It assists voters in marking their ballot and prints it out for them. Once the ballot is printed, **Verity Touch Writer** erases all memory components of that session.

- **Verity Touch Writer** was tested first as an individual component in order to verify that all declared functionality is present and working as documented, utilizing **Verity Build** produced media and data. All documented features were tested, and all functional features were verified to be documented.

- **Verity Touch Writer** was then tested as an integrated piece of the voting system, in several different test suites, where it accepted user input
instructions, prior to producing marked ballots that mirror user intent, utilizing all HAVA related options.

- Each function of the Verity Touch Writer device was examined in individual component testing to determine whether it functioned as expected. Each screen was inspected and exercised in order to provide full coverage. All supported ballot sizes were exercised on the device as well. Verity Touch Writer testing also included all applicable HAVA aspects.
- Verity Touch Writer was also tested within multiple system level tests that simulated election day activities.

5.5.1.2 Verity Scan

- **Verity Scan** is a standalone precinct level scanning device. It accepts and records votes from voter hand marked ballots, as well as from Verity Touch Writer marked ballots. Data from the votes cast is stored in a Verity vDrive and transported to central count locations for accumulation and tallying in Verity Count.
- **Verity Scan** was tested first as an individual component in order to verify that all declared functionality is present and working as documented, with Verity Build produced media and data. All documented features were tested, and all functional features were verified to be documented.
- As an individual component, each function contained within the Verity Scan device was examined to determine that it functioned as expected. Each screen was inspected and exercised in order to provide full coverage. All supported ballot sizes were exercised on the device as well.
- **Verity Scan** was also tested as an integrated piece of the voting system in several different test suites, where it inputs Verity Build produced media and data, then accepts user filled out ballots as well as Verity Touch Writer produced ballots within the polling place, prior to producing all defined output media.
- **Verity Scan** was also tested within the Accuracy test, Volume test, Stress test, and multiple system level tests that simulated election day activities.

5.5.1.3 Verity Controller/Verity Touch & Verity Touch with Access

- **Verity Touch** is a standalone precinct level DRE. It assists voters in marking their ballot and casts the ballot electronically for them. Once the ballot is cast, Verity Touch closes the session.
- **Verity Touch** was tested first as an individual component in order to verify that all declared functionality is present and working as documented, utilizing Verity Build produced media and data. All documented features were tested, and all functional features were verified to be documented.
- **Verity Touch** was then tested as an integrated piece of the voting system, in several different test suites, where it accepted user input instructions, prior to producing electronically marked ballots that mirror user intent, utilizing all HAVA related options (Verity Touch with Access).
o As an individual component each function contained within the **Verity Touch** (and **Verity Touch with Access**) device was examined to determine that it functioned as expected. Each screen was inspected and exercised in order to provide full coverage. **Verity Touch** testing also included all applicable HAVA aspects (**Verity Touch with Access**).

o **Verity Touch** was also tested within the Accuracy test, Volume test, Stress test, and multiple system level tests that simulated election day activities.

5.5.1.4 Verity Print

o **Verity Print** is a standalone central location ballot printing device. Once the ballot is printed, the voter can cast the ballot through **Verity Scan** or through **Verity Central**.

o **Verity Print** was tested first as an individual component in order to verify that all declared functionality is present and working as documented, utilizing **Verity Build** produced media and data. All documented features were tested, and all functional features were verified to be documented.

o **Verity Print** was then tested as an integrated piece of the voting system, in several different test suites, where it accepted user input instructions, prior to producing ballots which were then marked and cast through both **Verity Scan** and **Verity Central**.

5.5.1.5 Verity vDrive

o **Verity vDrive** is a Verity memory device. It carries information from **Verity Build** to each of the components within the **Verity** system during the pre-voting phase of an election. On election day, data from the votes cast in **Verity Scan** and **Verity Central** is stored in a **Verity vDrive** and transported to central counts locations for accumulation and tallying.

o **Verity vDrive** was tested first as an individual component in order to verify that all declared functionality is present and working as documented, utilizing **Verity Build** produced media and data. All documented features were tested, and all functional features were verified to be documented.

o **Verity vDrive** was also tested as an integrated piece of the voting system where it inputs **Verity Build** produced media and data, then accepts and transports cast vote record data and ballot images from the polling place to **Verity Count**.

5.5.1.6 Verity Key

o **Verity Key** is a Verity security device. It carries security information from **Verity Build** to each of the components within the **Verity** system.

o **Verity Key** was tested first as an individual component in order to verify that all declared functionality is present and working as documented, utilizing **Verity Build** produced data. All documented features were tested, and all functional features were verified to be documented.
Verity Key was also tested as an integrated piece of the voting system, where it is utilized for authorizing loading election information onto Verity Touch Writer, Scan and Central, as well as accumulating vote data into Verity Count.

5.5.2 How each Application was tested

5.5.2.1 Verity Data
- Verity Data accepts imported election data and produces contests, choices, precincts, districts, ballots, and all other data needed to import an election into Verity Build.
- Verity Data was tested first as an individual component in order to verify that all declared functionality is present and working as documented. All documented features were tested, and all functional features were verified to be documented.
- Verity Data was also tested as an integrated piece of the voting system where it outputs election data to be used by Verity Build.

5.5.2.2 Verity Build
- Verity Build accepts imported election information and produces ballots, election information, Verity vDrives and Verity Keys.
- Verity Build was tested first as an individual component in order to verify that all declared functionality is present and working as documented. All documented features were tested, and all functional features were verified to be documented.
- Verity Build was also tested as an integrated piece of the voting system where it outputs Verity Build produced media and data (via Verity Key and vDrive), which feed into Verity Touch Writer, Verity Scan, Verity Central and Verity Count.

5.5.2.3 Verity Central
- Verity Central is a central count location system that utilizes high speed scanners to scan large volumes of voted ballots, which are recorded onto a Verity vDrive for transportation to Verity Count for accumulation and tallying.
- Verity Central was tested first as an individual component in order to verify that all declared functionality is present and working as documented. All documented features were tested, and all functional features were verified to be documented.
- Verity Central was also tested as an integrated piece of the voting system where it inputs Verity Build produced media and data, then accepts user filled out ballots as well as Verity Touch Writer produced ballots, prior to producing all defined output medias.
5.5.2.4 Verity Count
- **Verity Count** is the Verity application used for accumulation and tallying of voted ballots, transported via Verity vDrive, from Verity Scan and Verity Central.
- **Verity Count** was tested first as an individual component in order to verify that all declared functionality is present and working as documented. All documented features were tested, and all functional features were verified to be documented.
- **Verity Count** was also tested as an integrated piece of the voting system where it inputs Verity Build produced media and data, then accepts Verity vDrive data from Verity Scan and Verity Central, prior to tabulating results and producing all defined output reports.

5.5.2.5 Verity Election Manager
- **Verity Election Manager** is the Verity application used for importing, exporting, archiving and restoring elections into and from Verity Build, Central and Count.
- **Verity Election Manager** was tested first as an individual component in order to verify that all declared functionality is present and working as documented.
- **Verity Election Manager** was also tested as an integrated piece of the larger voting applications where it resides (Verity Build, Central and Count), verifying that it performed the appropriate functions for the parent application.

5.5.2.6 Verity User Manager
- **Verity User Manager** is the Verity application used for creating and managing all user roles and accounts within each of the parent applications, Verity Build, Central and Count.
- **Verity User Manager** was tested first as an individual component in order to verify that all declared functionality is present and working as documented.
- **Verity User Manager** was also tested as an integrated piece of the larger voting applications where it resides (Verity Build, Central and Count), verifying that it performed the appropriate functions and managed the pertinent roles for the parent application.

5.5.2.7 Verity Desktop
- **Verity Desktop** is the Verity application used for setting workstation date/time, accessing the desktop and gathering hash codes for Verity Build, Central and Count.
- **Verity Desktop** was tested first as an individual component in order to verify that all declared functionality is present and working as documented.
- **Verity Desktop** was tested as an integrated piece of the larger voting applications where it resides (Verity Build, Central and Count), verifying that it performed the appropriate functions for the parent application.
5.5.3 How different System Level Configurations were tested

Verity Data/Build, Verity Central and Verity Count are each capable of being run as standalone instantiations or networked with a central database. Additionally, Verity Data/Build and Verity Count are able to be run on the same physical device as Verity Data/Build/Count workstations. Verity Data/Build/Count can also be utilized in either a stand-alone implementation or a networked configuration. Given these possible configurations, the following configurations were exercised:

• Verity Data/Build was tested in standalone mode with accompanying database
• Verity Count was tested in standalone mode with accompanying database
• Verity Data/Build/Count was tested in standalone mode with accompanying database
• Verity Central was tested in standalone mode with accompanying database
• Verity Data/Build server was tested in a networked mode with accompanying database and 3 client workstations (total of 4 workstations).
• Verity Count server was tested in a networked mode with accompanying database and 3 client workstations (total of 4 workstations).
• Verity Data/Build/Count server was tested in a networked mode with accompanying database and 3 client workstations (total of 4 workstations).
• Verity Central server was tested in a networked mode with accompanying database and 3 client workstations (total of 4 workstations).

5.5.4 Test Suites Utilized

The following test suites were executed:

5.5.4.1 Verity Election Manager test suite

All functionality present in Verity Election Manager was verified to work as documented, providing the appropriate functionality for each main application/workstation type, and that all functionality is appropriately documented.

This test covered Verity Build, Verity Central and Verity Count.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.2 Verity User Manager test suite

All functionality present in Verity User Manager was verified to work as documented, providing the appropriate functionality for each main application/workstation type, and all functionality is appropriately documented.
This test covered **Verity Build**, **Verity Central** and **Verity Count**.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.3 Verity Desktop test suite

All functionality present in **Verity Desktop** was verified to work as documented, providing the appropriate functionality for each main application/workstation type, and all functionality is appropriately documented.

This test covered **Verity Build**, **Verity Central** and **Verity Count**.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.4 Verity Data – standalone workstation test suite

All functionality present in **Verity Data** was verified to work as documented, and all functionality is appropriately documented.

This test covered **Verity Data** in a stand-alone configuration and focused on all functionality within the application.

Initial test resulted in Discrepancy HV-11, data import failed when import precincts with splits.

This discrepancy can be seen in further detail in "Attachment H – Discrepancies".

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.5 Verity Data – Client/Server configuration, Networked test suite

Testing of the client/server configuration for **Verity Data** was the focus of this testing, such that reliability of data consistency was verified in a networked setting. **Verity Data** networked supports a Server/Client workstation and up to 3 additional Client workstations, and was tested in its maximum configuration of 4 total workstations. The focus of the testing for the networked configuration was to verify that no concurrency issues existed. Updates to common functionalities were handled in a logical manner and as intended. No database issues were introduced, nor any data corruption. Audit logs correctly recorded the transactions performed by each user. No escalation of privileges occurred when multiple levels of role access were involved.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.6 Verity Build – standalone workstation test suite

All functionality present in **Verity Build** was verified to work as documented, and all functionality is appropriately documented.

This test covered **Verity Build** in a stand-alone configuration and focused on all functionality within the application.
This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.7 Verity Build – Client/Server configuration, Networked test suite
Testing of the client/server configuration for Verity Build was the focus of this testing, such that reliability of data consistency was verified in a networked setting. Verity Build networked supports a Server/Client workstation and up to 3 additional Client workstations, and was tested in its maximum configuration of 4 total workstations. The focus of the testing for the networked configuration was to verify that no concurrency issues existed. Updates to common functionalities were handled in a logical manner and as intended. No database issues were introduced, nor any data corruption. Audit logs correctly recorded the transactions performed by each user. No escalation of privileges occurred when multiple levels of role access were involved.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.8 Verity Central – standalone workstation test suite
All functionality present in Verity Central was verified to work as documented, and all functionality is appropriately documented.

This test covered Verity Central in a stand-alone configuration and focused on all functionality within the application.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.9 Verity Central – Client/Server configuration, Networked test suite
Testing of the client/server configuration for Verity Central was the focus of this testing, such that reliability of data consistency was verified in a networked setting. Verity Central networked supports a Server/Client workstation and up to 3 additional Client workstations, and was tested in its maximum configuration of 4 total workstations. The focus of the testing for the networked configuration was to verify that no concurrency issues existed. Updates to common functionalities were handled in a logical manner and as intended. No database issues were introduced, nor any data corruption. Audit logs correctly recorded the transactions performed by each user. No escalation of privileges occurred when multiple levels of role access were involved.

This test was without issue, and each device and application passed the tests in this suite.

5.5.4.10 Verity Count – standalone workstation test suite
All functionality present in Verity Count was verified to work as documented, and all functionality is appropriately documented.

This test covered Verity Count in a stand-alone configuration and focused on all functionality within the application.
This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.11 Verity Count – Client/Server configuration, Networked test suite
Testing of the client/server configuration for Verity Count was the focus of this testing, such that reliability of data consistency was verified in a networked setting. Verity Count networked supports a Server/Client workstation and up to 3 additional Client workstations, and was tested in its maximum configuration of 4 total workstations. The focus of the testing for the networked configuration was to verify that no concurrency issues existed. Updates to common functionalities were handled in a logical manner and as intended. No database issues were introduced, nor any data corruption. Audit logs correctly recorded the transactions performed by each user. No escalation of privileges occurred when multiple levels of role access were involved.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.12 Verity Data/Build/Count – standalone workstation test suite
This test covered Verity Data/Build/Count in a stand-alone configuration. The test focused on all functionality within the three applications and verified that the applications did not interfere with each other, nor produce unexpected behavior.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.13 Verity Data/Build/Count – Client/Server configuration, Networked test suite
Testing of the client/server configuration for Verity Data/Build/Count was the focus of this testing, such that reliability of data consistency was verified in a networked setting. Verity Data/Build/Count networked supports a Server/Client workstation and up to 3 additional Client workstations, and was tested in its maximum configuration of 4 total workstations. The focus of the testing for the networked configuration was to verify that no concurrency issues existed. No database issues were introduced, nor any data corruption. Audit logs correctly recorded the transactions performed by each user. No escalation of privileges occurred when multiple levels of role access were involved.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.14 Verity Print test suite
All functionality, including administrative, maintenance as well as election day functionality, present in Verity Print was verified to work as documented, and all functionality is appropriately documented.

This test was completed without issue, and each device and application passed the tests in this suite.
5.5.4.15 Verity Scan test suite

All functionality, including administrative, maintenance as well as election day poll worker functionality, present in **Verity Scan** was verified to work as documented, and all functionality is appropriately documented.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.16 Verity Touch Writer test suite

All functionality, including administrative, maintenance as well as election day poll worker functionality, present in **Verity Touch Writer** was verified to work as documented, and all functionality is appropriately documented.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.17 Verity Controller/Touch and Touch with Access test suite

All functionality, including administrative, maintenance as well as election day poll worker functionality, present in **Verity Controller/Touch and Touch with Access** was verified to work as documented, and all functionality is appropriately documented.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.18 Verity Controller/Touch and Touch with Access Chain test suite

Verity Controller can be chained to as many as 12 **Verity Touch** and/or **Verity Touch with Access** devices. A full chain of devices was tested. **Verity Controller/Touch and Touch with Access** was verified to work as documented and as expected, and all functionality is appropriately documented.

This test was completed without issue, and the configuration passed the tests in this suite.

5.5.4.19 GenVariation1 test suite

The focus of this suite was validating N of M voting, Partisan offices, Non-Partisan Offices, Ballot Rotations, Write-Ins, Ballot Formatting, precincts and split precincts, as well as Tally and Reporting functionality.

This test covered **Verity User Manager**, **Verity Election Manager**, **Verity Desktop**, **Verity Data**, **Verity Build**, **Verity Print**, **Verity Controller/Touch** and **Touch with Access**, **Verity Touch Writer**, **Verity Scan**, **Verity Central** as well as **Verity Count**. Vote counts were accumulated from both **Verity Central** and **Verity Scan** into **Verity Count**.

Languages implemented in the suite included English, Spanish and (English/Spanish).
Initial test resulted in Discrepancies HV-12, error message when saving empty added write-in candidate, and HV-13, error when trying to assign write-in vote to candidate already voted for.

These discrepancies can be seen in further detail in "Attachment H – Discrepancies".

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.20 GenVariation2 test suite
This suite built upon the GenVariation1 Test. Additional definition was added, with a focus on validating N of M voting, Straight Party voting, Cumulative voting, Partisan offices, Non-Partisan Offices, Write-Ins, ADA/HAVA, as well as Tally and Reporting functionality.

This test covered Verity User Manager, Verity Election Manager, Verity Desktop, Verity Data, Verity Build, Verity Print, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count. Vote counts were accumulated from both Verity Central and Verity Scan into Verity Count.

Languages implemented in the suite included English, Spanish and (English/Spanish). ADA devices utilized included headphones, paddles, and sip and puff.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.21 PriOpen test suite
The focus of this suite was an election designed to conform to an Open Primary election with focus on validating primary presidential delegation nominations, N of M voting, Partisan offices, Non-Partisan Offices, Ballot Rotations, Ballot Formatting, ADA/HAVA, precincts and split precincts, as well as Tally and Reporting functionality.

This test covered Verity User Manager, Verity Election Manager, Verity Desktop, Verity Data, Verity Build, Verity Print, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count. Vote counts were accumulated from both Verity Central and Verity Scan into Verity Count.

Languages implemented in the suite included English, Spanish and (English/Spanish). This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.22 PriClosed test suite
The focus of this suite was an election designed to conform to a Closed Primary election with N of M voting, Partisan offices, Non-Partisan Offices, Ballot Formatting, ADA/HAVA, precincts and split precincts, as well as Tally and Reporting functionality

Languages implemented in the suite included English, Spanish and (English/Spanish). This test covered Verity User Manager, Verity Election Manager, Verity Desktop, Verity Data, Verity Build, Verity Print, Verity Controller/Touch and Touch with Access, Verity
Touch Writer, Verity Scan, Verity Central as well as Verity Count. Vote counts were accumulated from both Verity Central and Verity Scan into Verity Count.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.23 Error Messaging and Recovery test suite

Testing in this suite focused on Error Messaging and Recovery in key areas of the system identified from researching previous testing and voting system documentation to help identify potential failure points. Voting systems can be subject to various conditions and when the system exceeds limitations, errors are typically found. Testing of Error messaging focused on the appropriate error messages being generated in response to specific errors, and content of the message. Methods employed to generate errors included attempting to access functions out of order or without authorization, erroneous responses to error messages, and use of invalid USB blank drives as well as invalid inputs. Testing of the voting system Error Recovery capability was also incorporated into Stress testing in order to leverage the necessary range of performance impacts needed to generate system errors and force recoveries. The test suite verified that the recoveries were adequate, the system and audit log’s validity of content, and that any downstream process were not negatively affected by errors.

This test covered Verity User Manager, Verity Election Manager, Verity Desktop, Verity Data, Verity Build, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.24 Audit test suite

Audit records are used to track what system functions have been executed, what data has been modified, as well as by whom and when. Election audit trails provide the supporting documentation for verifying the accuracy of reported election results. They present a concrete, indestructible archival record of all system activity related to the vote tally, and are essential for public confidence in the accuracy of the tally, for recounts, and for evidence in the event of criminal or civil litigation. Additionally, audit record data content can be a key factor in identifying system anomalies and provide assistance in troubleshooting system errors.

Analysis of the Verity 2.0 voting system was performed to determine the content needed to accurately depict the machinations of the system for the given situation was properly captured. This test suite looks at the overall coverage of auditing of events within the Verity 2.0 system as well as the content of the audit record in order to ensure sufficient information is captured. The Verity 2.0 applications utilize both an audit log and a system log to track workstation occurrences at two different levels. Tests were incorporated into Election Validation suites as well as specific Audit validation suites, such that all related requirements were explicitly validated.
This test covered Verity User Manager, Verity Election Manager, Verity Desktop, Verity Data, Verity Build, Verity Controller.Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.25 Accuracy test suite
Testing the ability of the system to capture, record, store, consolidate and report the specific selections and absence of selections, made by the voter for each ballot position without error.

Required accuracy is defined in terms of an error rate that for testing purposes represents the maximum number of errors allowed while processing a specified volume of data. For the Accuracy test, the defined volume is no errors in 1.55 million ballot marking positions, or no more than 1 error in 3.1 million ballot marking positions.

Accuracy testing was conducted at both the device level and the system level.
Each device was subjected to scrutiny that verified that the requirements for accuracy are met. Additionally, the system was reviewed and exercised to validate that the accumulation, tallying and reporting mechanisms at the system level are able to accurately perform their functions.

This test covered, Verity Scan, Verity Touch Writer, Verity Controller.Touch and Touch with Access, Verity Central as well as Verity Count. Vote counts were accumulated from Verity Controller.Touch and Touch with Access, Verity Central and Verity Scan. Note that Verity Central was tested with all supported scanners.

Verity Scan supports 3 base ballot sizes
- 8.5" x 11"
- 8.5" x 14"
- 8.5" x 17"

Each ballot size was exercised in the Verity Scan. Each size contained 2600 ballots with 600 ballot marking positions. This totaled 7800 ballots and 4.8 million marking positions read by Verity Scan.

Verity Touch Writer supports 3 base ballot sizes
- 8.5" x 11"
- 8.5" x 14"
- 8.5" x 17"

Each ballot size was exercised in the Verity Touch Writer. Each size contained 50 ballots with 600 ballot marking positions. This totaled 150 ballots and 90,000 marking positions, which were then read by Verity Scan.

Verity Central supports 3 scanner types and 4 base ballot sizes
- 8.5" x 11"
- 8.5" x 14"
Each ballot size was exercised in Verity Central through each scanner type. Each size contained 2600 ballots with 600 ballot marking positions. This totaled 7800 ballots and 4.8 million marking positions through each scanner type, for a total of 23,400 ballots and 14.4 million ballot marking positions.

Voting positions were distributed on each ballot size so as to exercise the entire ballot. This was done by eliminating contest headers which maximized the area for distribution of the ballot marking positions.

Verity Controller/Touch and Touch with Access were exercised with the electronic version of the ballots.

All ballot sizes and ballots exercised as described above, were inputted into Verity Count. This accumulated to 32,350 ballots and 20.1 million ballot marking positions.

All Accuracy tests were completed without issue, and each device and application passed the tests in this suite.

5.5.4.26 Mark Sensitivity test suite

The purpose of Ballot Mark Sensitivity testing was to determine that the system under test is able to accurately determine when a mark has been made within a ballot marking position. For this test, various marks were made within the ballot marking positions, using Verity supported colors of ink.

Marks include fully filled boxes, left and right oriented slashes, "X" markings, check marks, horizontal single line marks, and circles of various sizes. Marks also included vertical lines within the marking position that fill approximately five percent of the designated space. Small dots down to approximately two percent of the ballot marking position are also included.

The Verity specifications specify that only blue or black ink is to be utilized in the marking of ballot positions. These ink colors had no issues. Additional inks were also tested, as well as #2 pencil lead. The colors purple and green and the pencil lead were read without issue on both Verity Scan and Verity Central. The ink colors red, orange and pink were tested and were able to be read on Verity Central, but were not detected on Verity Scan. The results on Verity Scan were not unexpected as the scanner employs an LED light source. As Verity Scan is a polling place device, the governance of marking utensils should be able to prevent issues with these ink colors. This test covered Verity Scan, Verity Central as well as Verity Count. Vote counts were accumulated from both Verity Central and Verity Scan into Verity Count.

This test was completed as described above and each device and application passed the tests in this suite.
5.5.4.27 Volume and Stress test suite

Volume Testing consists of a system's response when subjected to large quantities of data, "more than the expected", as called out in the standards. Volume testing is typically considered a type of non-functional testing. However, as a voting system's primary function is to accumulate, tally, and pass a volume of data (votes) the VSTL approaches volume testing as a functional test. Experience has shown that large amounts of data can slow a system, or even cause failures and loss of data due to architectural limitations. The testing focused on not only passing large amounts of data but how the system operates and handles the data in key areas of functionality within the voting system. Vote gathering components (Verity Controller/Touch and Touch with Access, Verity Scan and Verity Central) were subjected to volumes of data that met the upper limits of expected performance.

Verity Scan is a standalone device that processes ballots one at a time. Anticipated expected usage in an election environment is 1,000 ballots per device. The test was conducted in a 12 hour time period and 2,500 ballots.

Verity Central is designed to run either in standalone or in networked configurations of up to 4 workstations (1 Server/Client and 3 Clients). The Server/Client workstation maintains the database for all 4 workstations. This configuration was exercised in order to create a significant volume on Verity Central. The Kodak i5600 ballot scanner has an expected usage of 20,000 ballots in an 8 hour period. The Cannon DR-G1100 ballot scanner has an expected usage of 14,000 ballots in an 8 hour period. The Cannon DR-G1130 ballot scanner has an expected usage of 14,500 ballots in an 8 hour period. 1 Kodak i5600, 2 Cannon DR-G1100's and 1 CannonDR-G1130 were utilized in this volume/stress configuration. The expected usage was 62,500 ballots in an 8 hour period. The test was conducted in a 12 hour period and processed 85,000 ballots.

Verity Controller/Touch and Touch with Access is designed to run with up to 12 Verity Touch/Touch with Access devices. This configuration was exercised in order to create a significant volume for the chained DRE's. Each Touch/Touch with Access would be expected usage of 120 ballots in an 8 hour period. A full chain implementation had an expected 1440 ballots in an 8 hour period. The test was conducted in a 8 hour period and processed 2100 ballots.

This test covered Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count. Vote counts were accumulated from both Verity Central and Verity Scan.

Stress testing consists of a “system’s response to transient overload conditions.” Experience has shown that when passing a dataset through a system that eclipses the system architectural limitations, failures can occur and result in the loss of critical data. The testing focused on the system’s ability to operate after the limitations have been exceeded and if failures occur, how the data is maintained or recovered in key areas of functionality within the voting system. Vote gathering components (Verity Controller/Touch and Touch with Access, Verity Scan and Verity Central) were subjected to volumes of data that surpassed the upper limits of expected performance.
As this test is the "next step" from the Volume test, it was performed at the conclusion of the Volume test, utilizing the implementation setup as described for the Volume test.

Verity Scan. The test was conducted in an additional 8 hour time period and processed an additional 3500 ballots on the same device. The number of ballots for the device totaled 6,000.

Verity Central. The test was conducted in an additional 8 hour time period and processed an additional 65,000 ballots on the same configuration. The number of ballots for the component totaled 150,000.

Verity Controller/Touch and Touch with Access The test was conducted in an additional 16 hour time period and processed an additional 3947 ballots on the same configuration. The number of ballots for the component totaled 6047.

This test covered **Verity Build, Verity Touch Writer, Verity Scan, Verity Controller/Touch and Touch with Access, Verity Central** as well as **Verity Count.** Vote counts were accumulated from both **Verity Central** and **Verity Scan.**

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.28 Language testing

Testing was conducted to ensure the voting system is capable of implementing and presenting the ballot, ballot selections, review screens and instructions in the required languages, English and Spanish, both visually as well as aurally. This testing is incorporated in the General and Primary test suites detailed within this section.

This testing covers **Verity Data, Verity Build, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central** as well as **Verity Count.** Vote counts were accumulated from both **Verity Central** and **Verity Scan.**

This testing was completed without issue, and each device and application passed the tests in this suite.

5.5.4.29 Data Retention and Hardware Integrity testing

Integrity requirements ensure the physical stability and function of the vote recording and counting processes, such that the system is not prone to a single point of failure that would prevent voting at a polling place. Testing verified prevention of failure of data input or storage, in terms of data retention, as well as confirming that appropriate audit records are maintained and cannot be modified.

The requirements related to this testing were incorporated into other test suites for validation. A review of all testing performed and notation of any pertinent issues encountered also factored into the requirements validation consideration.

This testing covers **Verity Data, Verity Build, Verity Print, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central** as well as **Verity Count.**
This testing was completed without issue, and each device and application passed the tests in this suite.

5.5.4.30 Security Access Control test suite

Access control testing verifies procedures and system capabilities that detect or limit access to system components in order to guard against loss of system integrity, availability, confidentiality, and accountability. This testing verified that system resources such as data files, application programs and computer-related facilities and equipment are protected against unauthorized operation, modification, disclosure, loss or impairment. Unauthorized operations include modification of compiled or interpreted code, run-time alteration of flow control logic or of data, and abstraction of raw or processed voting data in any form other than a standard output report by an authorized operator.

This testing covers Verity Data, Verity Build, Verity Print, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.31 Security Software test suite

Software security testing was conducted to verify the installation procedures and ongoing foreign software detection, prevention of unauthorized updates and mitigation abilities of the voting system in order to protect against the modification of the software and/or the insertion of malicious software during the installation and during ongoing operations.

Hart’s Devices and Desktop systems rely upon a security in depth posture that includes Whitelisting, utilizing McAfee Solidifier, implementing a kiosk mode for all devices and workstations, restricted operating system access, utilization of MS EWF, checksum checks, secured BIOS, prevention of boot to external devices, encrypted transmissions, proprietary USB components, digital signatures and pared down operating systems with only required features and services.

This testing covers Verity Data, Verity Build, Verity Print, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.32 Physical Security Measures test suite

Physical security testing verified monitoring and control of the environment of the work place and computing facilities. It also verified control of access to and from such facilities. Controls separating the network and work place into functional areas are also physical controls. Some portions of physical security are functional while other portions are procedural. Functional portions were tested as appropriate while procedural portions were verified to be documented as prescribed by the VVSG 1.0. For polling place devices, Verity Scan and the accompanying ballot box, were inspected for the Hart prescribed locks and
seals, as well as confirming that the physical device and accompanying ballot box were resistant to unauthorized access and provided for detection of tampering. For Verity Touch Writer, the device was inspected for Hart prescribed locks, resistance to unauthorized access, as well as providing for detection of tampering. Note that no telecommunications are implemented in the polling place.

This testing covers Verity Data, Verity Build, Verity Print, Verity Controller/Touch and Touch with Access, Verity Touch Writer, Verity Scan, Verity Central as well as Verity Count.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.33 Audio test suite
Audio testing was performed in order to verify that the polling place ballot marking device, Verity Touch Writer, as well as Verity Controller/Touch and Touch with Access fell within the acceptable parameters of hearing as defined in the VVSG 1.0.

This test covered Verity Controller/Touch and Touch with Access, Verity Touch Writer.

This test was completed without issue, and each device and application passed the tests in this suite.

5.5.4.34 Accessibility and Usability test suite
Testing accessibility requirements for a voting system generally consists of both objective and observable requirements. In combination, the two types of requirements verify that the voting system components are accessible to all eligible voters, including those that may have a type of challenge that creates a need for ATI peripherals of some type. The voting systems should be self contained to allow a voter to cast their vote without assistance from another person. Accessibility calls for the voting system to take into account degrees of vision, dexterity, mobility, aural issues, and speech and language proficiency.

Usability is defined as a measure of the effectiveness, efficiency, and satisfaction achieved by a specified set of users with a given product in the performance of specified tasks. In the context of voting, the primary user is the voter, the product is the voting system, and the task is the correct recording of the voter ballot selections. Testing is conducted to ensure voters are able to negotiate the process effectively, efficiently and comfortably according to the requirements dictated, including HAVA requirements.

This test's focus was as described above, as well as a review of the report of mandated usability study performed by Hart, as per VVSG 1.0 requirements.

This test covered Verity Touch Writer, Verity Controller/Touch and Touch with Access and Verity Scan.

This test was completed without issue, and each device and application passed the tests in this suite.
5.5.4.35 Maintainability test suite

Maintainability encompasses a range of maintenance actions that examine all scheduled and unscheduled events in place for preventing failures on all hardware devices. Testing verifies the ease with which maintenance actions can be performed based on the design characteristics of the equipment and software. Non-technical election workers are to be able to be made aware of the problem through the equipment and software’s ability to correctly self-diagnose problems.

This test included review of Hart documentation for maintenance actions as well as performance of those maintenance actions for ease of use and understandability.

This test covered Verity Touch Writer, Verity Controller/Touch and Touch with Access and Verity Scan

This test was completed without issue, and each device and application passed the tests in this suite.

5.6 Evaluation of Testing

The above tests were successfully conducted using the executables delivered in the final Trusted Build, in association with the appropriate hardware versions as declared in this Test Report for the Hart InterCivic Verity 2.0 voting system.

Issues were found during functional testing as described in section “5.9 – Deficiencies Found During Testing”. This resulted in a total of 4 Trusted Builds. The number of issues was reduced in number in each Trusted Build, with the final issues being resolved in Trusted Build #4.

After the initial Trusted Build, each subsequent round of testing consisted of discrepancy fix verification and additional regression testing. Analysis of each individual discrepancy determined the level of retesting required to verify the issue was resolved and did not result in any new issues occurring downstream within the system workflow. Often, the issue being addressed was isolated in its effect, but occasionally resulted in the test suite where the issue was first found, to be re-run in its entirety.

5.7 Environmental Hardware Test Summary

Based upon an examination of the equipment listed in Table 8 – COTS Equipment, and Hart’s Hardware Specification, SLI concluded that the hardware listed is COTS (Commercial off the Shelf). As such, it is not subject to Environmental Hardware Testing.

SLI and its third-party certified hardware test laboratories, NTS Longmont formerly EMC Integrity, and Cascade TEK, executed Environmental Hardware testing on the non-COTS hardware listed in Table 7 – Hart Verity 2.0 Voting Equipment, and Table 4 – Hart Verity 2.0 Software and Firmware.
The testing consisted of:

- **Electromagnetic Emissions / Immunity Tests:**
 - Conducted RF Immunity – IEC 61000-4-6 (1996-04).

- **Non-Operating Environmental Tests:**
 - Bench Handling - MIL-STD-810D, Method 516.3, Procedure VI

- **Operating Environmental Tests:**
 - Temperature/Power Variation - similar to the low temperature and high temperature tests of MIL-STD-810-D, Method 502.2 and Method 501.2.
 - Reliability – Vol. 1, Section 4 for the acceptable Mean Time Between Failure (MTBF).

5.7.1 Evaluation of Environmental Hardware Testing

No issues were found. Attachments G contain the hardware environmental reports from SLI's EAC approved Hardware Environmental Test Subcontractor(s), NTS Longmont formerly EMC Integrity, and Cascade TEK. These reports detail specific information on the environmental hardware testing. As of the writing of this report, all devices subjected to hardware testing, as listed above, have successfully passed all tests.
5.8 Quality Assurance and Configuration Management Audits

The review processes employed verified that the manufacturer not only has written processes and procedures in both the Quality Assurance and Configuration Management arenas, but that those processes and procedures were actually implemented within the software development life cycle that is used to produce the Hart Verity Voting 2.0 version that is submitted for certification.

The QA portion of the review focused on the testing performed by Hart InterCivic. The scope of the testing performed was reviewed in order to verify that Hart InterCivic verified that all VVSG 1.0 requirements were met in Verity 2.0. SLI reviewed the test case design documents and data as provided by Hart InterCivic.

Coverage of tests employed by Hart was deemed satisfactory for appropriate robustness of Verity 2.0 in meeting the requirements of the VVSG 1.0.

The CM portion of the review focused on the organization's understanding and implementation of the declared configuration management processes, procedures and policies. Deliverables were reviewed against all pertinent CM processes employed by Hart InterCivic. Interviews of pertinent staff, with regard to configuration management were conducted to verify that processes, procedures and policies are known, understood and implemented within the organization.

Implementation of the Hart configuration processes was adequately documented and followed throughout the course of the Verity 2.0 project, and no issues were encountered.

5.9 Deficiencies Found During Testing

Discrepancies found fall into 4 major categories, Hardware, Documentation, Source Code, and Functional. Hardware discrepancies are issues that occur specifically in the hardware arena, and are usually found during the hardware testing phase. Documentation discrepancies are issues that occur during the PCA documentation review phase and are issues that are resolved by updates to the documentation. Source Code discrepancies are issues that occur during source code review and are issues that must be fixed in the source code prior to the Trusted Build. Functional discrepancies are issues that occur during functional testing and can be related to any software or firmware within the system. Functional discrepancies often lead to source code modifications, additional source code review and an additional Trusted Build.

5.9.1 Hardware Discrepancies

No hardware discrepancies were written during this campaign.
5.9.2 Documentation Discrepancies and Informationals

Discrepancy issues included:

- System change notes did not encompass documentation changes (#1&2)
- Requirement coverage not found (#16,17,18,19,20,25)
- Development comments left in (#21)
- Missing features (#23)
- Outdated information included (#24)

Informational issues included:

- Documents that were labeled as “Draft”. (#3,4,5)
- Typo’s (#6,7,8,9,10,11,12,13,14,15)
- Files in TDP but not listed in Overview (#22)

5.9.3 Source Code Discrepancies

Source code review generated 766 discrepancies during the review process.

Basic formatting and naming convention issues accounted for 710 of the issues.

Basic programming construct issues were addressed in 54 of the discrepancies.

Issues of a logic nature accounted for 2 of the discrepancies.

All issues were addressed prior to performing the initial Trusted Build

5.9.4 Functional Discrepancies

Functional testing generated 3 discrepancies. 2 additional discrepancies were reported by Hart Intercivic (HV-14 and HV-15).
System functionality issues accounted for 5 discrepancies.

- HV-11, data import failed when import precincts with splits, Verity Data
- HV-12, error message when saving empty added write-in candidate, Verity Central
- HV-13, error when trying to assign write-in vote to candidate already voted for, Verity Count
- HV-14, invalid "Cancel" button when booting, following a suspend polls action, Verity Scan
- HV-15, error generating write-in report after a reboot, after closing polls, Verity Controller

These issues can be seen in further detail in "Attachment H – Discrepancies".

All issues were resolved prior to the final Trusted Build.

5.9.5 Anomalies

Hardware Anomalies

During hardware testing at NTS Longmont formerly EMC Integrity, SLI personnel observed the following anomalies.

Lighting Surge IEC 61000-4-5 (1995-02)

Note: The File I/O test is part of Hart’s test software to fully exercise all the features of each Verity model, test software was run during EMC/EMI tests to exercise the model’s particular hardware features.

Controller:
- At + 2kV (common mode) line to earth (Line 1) caused the controller’s thermal printer to stop printing. The test was stopped because Verity Controller’s thermal printer stopped printing though the file I/O was still running.
 - Mitigation performed by Hart and observed by SLI personnel: stop and restart print test application.
- Following test protocol the test was restarted from the beginning, no problems occurred. Unable to reproduce the issue.

ESD IEC 61000-4-2 (2008) Ed.2.0

Controller:
- At +8kV vertical cause the controller’s thermal printer to stop printing and lockup.
 - Power cycle controller and restarted ESD test.
- At -15kV, air discharge on the red power after 3 pulse cause the screen to freeze with distorted PIXS.
Following ESD protocol the test was restarted, no problems occurred. Unable to reproduce the issue.

Touch with Access:
- At -15kV, air discharge to the ATI main cord connected to the Touch with Access caused the tablet to reset twice. This complied with ESD exit criteria (B) Self-Recovering.
 - Mitigation performed by Hart and observed by SLI personnel: stop and restart test applications on the Touch with Access.
- Following ESD protocol the test was restarted, no problems occurred. Unable to reproduce the issue.

1 anomaly was encountered during functional testing. This issue occurred once and was not able to be reproduced despite multiple retries on various environments, including the original environment.

When an invalid vDrive was attempted to be used, to write results to, the Verity Central application froze up instead of informing the user that the vDrive was invalid.

This issue can be seen in further detail in “Attachment H – Discrepancies”, Item #: HV-10.

5.10 Deficiencies

SLI has determined that there are no remaining unresolved deficiencies against the requirements tested.
6 Recommendations

SLI has successfully completed the testing of the Hart InterCivic Verity 2.0 voting system. It has been determined that the Verity 2.0 voting system meets the required acceptance criteria of the Election Assistance Commission Voluntary Voting System Guidelines 2005.

This recommendation reflects the opinion of SLI Compliance based on testing scope and results. It is SLI's recommendation based on this testing effort that the EAC grant certification of Hart InterCivic Verity 2.0 voting system.

SLI:

Traci Mapps
VSTL Director/Director of Operations
April 14th, 2016

7 EAC Certification & Voting System Configuration

This report has been submitted to the Election Assistance Commission on April 14th, 2016. Upon acceptance of this report by the EAC technical committee, a certification number will be issued for this modification.

This certification is for the Hart InterCivic Verity 2.0 voting system, configured as detailed in section 3 of this document.

End of Certification Test Report
State of Tennessee

Verity Voting 2.0

July 11, 2016
Hart InterCivic - Over 100 Years

1912
Company founded

2000
Industry's 1st DRE

2002
Industry's 1st digital ballot

2005
Introduced paper ballot solution

2011
Began formal customer survey program

2015
Verity Voting system EAC certified

2016 +
Continue to innovate

Advancing Democracy
Hart Customers

- 17 states
- 560+ jurisdictions served
- 24,300+ precincts
- 92,300+ fielded voting devices
- Millions of votes cast
- ★ Verity Installations
Hart in Tennessee

Products: Hart Voting System, since 2006
Verity Voting 1.0, certified in Tennessee Dec. 2015; no installations yet
Direct customers, and through our partner reseller, Harp Enterprises
Voting Machines
Verity Voting 2.0

Verity Voting 2.0 is a modification of the prior, currently-certified system (Verity Voting 1.0).
- The currently-certified system supports paper-based voting only.

Verity Voting 2.0 adds DRE voting to the system.

New voting machine additions:
- Verity Touch – DRE voting device
- Verity Touch with Access – Accessible DRE voting device
- Verity Controller – DRE polling place management device (for poll worker use)
Verity Voting 2.0

All-electronic (DRE) voting All-electronic voting with accessibility Centralized voting management

Verity Touch Verity Touch with Access Verity Controller
United States Election Assistance Commission

Certificate of Conformance

Hart InterCivic Verity 2.0

The voting system identified on this certificate has been evaluated at an accredited voting system testing laboratory for conformance to the 2005 Voluntary Voting System Guidelines (2005 VVSG). Components evaluated for this certification are detailed in the attached Scope of Certification document. This certificate applies only to the specific version and release of the product in its evaluated configuration. The evaluation has been verified by the EAC in accordance with the provisions of the EAC Voting System Testing and Certification Program Manual and the conclusions of the testing laboratory in the test report are consistent with the evidence adduced. This certificate is not an endorsement of the product by any agency of the U.S. Government and no warranty of the product is either expressed or implied.

Product Name: Verity
Model or Version: 2.0
Name of VSTL: SRL Global
EAC Certification Number: HRTVerity2.0
Date Issued: 4/27/2016

Advancing Democracy
Verity Voting 2.0 Certification Status

- Certified by the EAC to 2005 VVSG (April 27, 2016)
- State Certifications – Completed
- State Certifications – Pending
 - Texas (Exam completed June, 2016)
 - Virginia (Exam scheduled July, 2016)
 - Idaho (Exam scheduled July, 2016)
Verity Touch

- Paperless DRE
- Plain language voter interface
- Voter independence
- Ease of Use
- Triple redundancy
- Adaptability
- Overvote controls
- Scalability
Verity Touch with Access

- Tactile buttons
- Audio ballots
- Compatibility with common adaptive devices
Verity Controller

Dashboard provides constant status of all terminals

Consolidates votes in real time
Daisy-chain Set Up